Cancer cells can invade in three-dimensional collagen as single cells or as a cohesive group of cells that require coordination of cell-cell junctions and the actin cytoskeleton. To examine the role of Gα13, a G12 family heterotrimeric G protein, in regulating cellular invasion in three-dimensional collagen, we established a novel method to track cell invasion by membrane type 1 matrix metalloproteinase-expressing cancer cells. We show that knockdown of Gα13 decreased membrane type 1 matrix metalloproteinase-driven proteolytic invasion in three-dimensional collagen and enhanced E-cadherin-mediated cell-cell adhesion. E-cadherin knockdown reversed Gα13 siRNA-induced cell-cell adhesion but failed to reverse the effect of Gα13 siRNA on proteolytic invasion. Instead, concurrent knockdown of E-cadherin and Gα13 led to an increased number of single cells rather than groups of cells. Significantly, knockdown of discoidin domain receptor 1 (DDR1), a collagen-binding protein that also co-localizes to cell-cell junctions, reversed the effects of Gα13 knockdown on cell-cell adhesion and proteolytic invasion in three-dimensional collagen. Knockdown of the polarity protein Par3, which can function downstream of DDR1, also reversed the effects of Gα13 knockdown on cell-cell adhesion and proteolytic invasion in three-dimensional collagen. Overall, we show that Gα13 and DDR1-Par3 differentially regulate cell-cell junctions and the actin cytoskeleton to mediate invasion in three-dimensional collagen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722444PMC
http://dx.doi.org/10.1074/jbc.M115.669606DOI Listing

Publication Analysis

Top Keywords

three-dimensional collagen
28
invasion three-dimensional
24
proteolytic invasion
16
cell-cell adhesion
16
cell-cell junctions
12
gα13
9
invasion
8
cell invasion
8
discoidin domain
8
domain receptor
8

Similar Publications

The Labiomandibular Fold Anatomy for Comprehensive Lower Facial Rejuvenation: A Micro-Computed Tomography Investigation.

Aesthetic Plast Surg

January 2025

Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1, Shuaifuyuan, Dongcheng District, Beijing, China.

Background: Perioral rejuvenation is challenging due to the lack of spatial anatomical understanding of the labiomandibular fold (LMF). The LMF's formation mechanism remains underexplored due to intricate relationships between musculature and subcutaneous structures. This study aimed to clarify the three-dimensional structures of the LMF using micro-computed tomography and histology.

View Article and Find Full Text PDF

The advent of bioprinting has enabled the creation of precise three-dimensional (3D) cell cultures suitable for biomimetic in vitro models. In this study, we developed a novel protocol for 3D printing methacrylated collagen (ColMa, or PhotoCol®) combined with tendon stem/progenitor cells (hTSPCs) derived from human tendon explants. Although pure ColMa has not previously been proposed as a printable hydrogel, this paper outlines a robust and highly reproducible pipeline for bioprinting this material.

View Article and Find Full Text PDF

Miniaturized Liver Disease Mimics to Gain Insights into MMP Expression during Disease Progression.

ACS Biomater Sci Eng

January 2025

Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.

Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver conditions, ranging from hepatic steatosis to steatohepatitis, fibrosis, and severe outcomes such as cirrhosis or cancer. The progression from hepatic steatosis to fibrosis involves significant extracellular matrix (ECM) remodeling, characterized by increased collagen deposition and cross-linking of ECM proteins, causing increased tissue stiffness and altered MMP expression patterns. Dysregulated MMP expression and extracellular acidosis are key contributors to NAFLD progression.

View Article and Find Full Text PDF

FRESH extrusion 3D printing of type-1 collagen hydrogels photocrosslinked using ruthenium.

PLoS One

January 2025

The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America.

The extrusion bioprinting of collagen material has many applications relevant to tissue engineering and regenerative medicine. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technology is capable of 3D printing collagen material with the specifications and details needed for precise tissue guidance, a crucial requirement for effective tissue repair. While FRESH has shown repeated success and reliability for extrusion printing, the mechanical properties of completed collagen prints can be improved further by post-print crosslinking methodologies.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate the histological and ultrastructural features of the elastic cartilage at the tip of the vocal process in the arytenoid cartilage, which is essential for laryngeal biomechanics.

Methods: Five larynges, including the vocal folds and epiglottis, were examined using transmission electron microscopy. The elastic cartilage at the tip of the vocal process was compared to the epiglottic cartilage within the same larynx to elucidate structural differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!