Luminescent Silica Nanoparticles Featuring Collective Processes for Optical Imaging.

Top Curr Chem

Dipartimento di Chimica, G. Ciamician, Via Selmi 2, 40126, Bologna, Italy.

Published: February 2016

The field of nanoparticles has successfully merged with imaging to optimize contrast agents for many detection techniques. This combination has yielded highly positive results, especially in optical and magnetic imaging, leading to diagnostic methods that are now close to clinical use. Biological sciences have been taking advantage of luminescent labels for many years and the development of luminescent nanoprobes has helped definitively in making the crucial step forward in in vivo applications. To this end, suitable probes should present excitation and emission within the NIR region where tissues have minimal absorbance. Among several nanomaterials engineered with this aim, including noble metal, lanthanide, and carbon nanoparticles and quantum dots, we have focused our attention here on luminescent silica nanoparticles. Many interesting results have already been obtained with nanoparticles containing only one kind of photophysically active moiety. However, the presence of different emitting species in a single nanoparticle can lead to diverse properties including cooperative behaviours. We present here the state of the art in the field of silica luminescent nanoparticles exploiting collective processes to obtain ultra-bright units suitable as contrast agents in optical imaging and optical sensing and for other high sensitivity applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-22942-3_1DOI Listing

Publication Analysis

Top Keywords

luminescent silica
8
silica nanoparticles
8
collective processes
8
optical imaging
8
contrast agents
8
nanoparticles
6
luminescent
5
nanoparticles featuring
4
featuring collective
4
optical
4

Similar Publications

The sensitive detection of inflammatory biomarkers in gingival crevicular fluid (GCF) is highly desirable for the evaluation of periodontal disease. Luminol-based electrochemiluminescence (ECL) immunosensors offer a promising approach for the fast and convenient detection of biomarkers. However, luminol's low ECL efficiency under neutral conditions remains a challenge.

View Article and Find Full Text PDF

We have successfully prepared a significant number of nanowires from non-toxic silicon sources. Compared to the SiO silicon source used in most other articles, our preparation method is much safer. It provides a simple and harmless new preparation method for the preparation of silicon nanowires.

View Article and Find Full Text PDF

Pneumonia is a prevalent acute respiratory infection and a major cause of mortality and hospitalization, and the urgent demand for a rapid, direct, and highly accurate diagnostic method capable of detecting both () and () arises from their prominent roles as the primary pathogens responsible for pneumonia. Herein, two luminescent iridium complexes with nonoverlapping photoluminescence spectra, iridium(III)-bis [4,6-(difluorophenyl)-pyridinato-N,C'] picolinate (abbreviated as Ir-B) and bis (2-(3,5- dimethylphenyl) quinoline-C2,N') (acetylacetonato) iridium(III)) (abbreviated as Ir-R), were unprecedently proposed to construct a novel wavelength-resolved magnetic multiplex biosensor for simultaneous detection of and based on catalytic hairpin assembly (CHA) signal amplification strategy combined with dye-doped silica nanoparticles. Notably, the proposed wavelength-resolved multiplex biosensor not only exhibits a broad linear range from 50 pM to 10 nM but also demonstrates excellent recovery rates for (96.

View Article and Find Full Text PDF

Two new polyacetylenes from the roots of .

Nat Prod Res

January 2025

Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, P. R. China.

Two new polyacetylenes, (5,12)-14-hydroxytetradeca-5,12-dien-8,10-diyn-1-yl 3-methylbut-2-enoate () and 5, 1'-(6,12)-1-hydroxytetradeca-6,12-dien-8,10-diyn-5-yl 2-methylbutanoate (), together with two known ones, (2,8)-12--methylbutyryltetradeca-2,8-diene-4,6-diyne-1,14-diol (), and ()-5-[5-(but-3-en-1-yn-1-yl)thiophen-2-yl]pent-2-en-4-yn-1-yl acetate () were isolated from the ethyl acetate extract of the roots of by various chromatographic methods, such as normal phase silica gel column, MPLC, and semi-preparative HPLC. Their structures were identified by kinds of spectroscopic methods including 1D NMR, 2D NMR, IR, UV, HR-ESI-MS, and ECD. Compound exhibited cytotoxic activities in HepG2 and Huh7 cells with IC values of 20.

View Article and Find Full Text PDF

Low-Toxicity and High-Stability Fluorescence Sensor for the Selective, Rapid, and Visual Detection Tetracycline in Food Samples.

Molecules

December 2024

State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.

With the development and improvement of analysis and detection systems, low-toxicity and harmless detection systems have received much attention, especially in the field of food detection. In this paper, a low-toxicity dual-emission molecularly imprinted fluorescence sensor (CdTe QDs@SiO/N-CDs@MIPs) was successfully designed for highly selective recognition and visual detection of tetracycline (TC) in food samples. Specifically, the non-toxic blue-emission N-doped carbon dots (N-CDs) with high luminous performance acted as the response signals to contact TC via the covalent bond between amino and carboxyl groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!