Background: Early after neonatal cardiac surgery hemodynamic dysfunction may be evident. However, still is not clear if dysfunction and outcome is related to visible myocardial alterations. The aim of the present study was the histological analysis of myocardial tissue of neonatal piglets after cardiopulmonary bypass (CPB) and cardioplegic arrest.
Methods: Neonatal piglets (younger than 7 days) were connected to CPB for 180 min, including 90 min of cardioplegic heart arrest at 32 °C. After termination of CPB the piglets were observed up to 6 h. During this observational period animals did not receive any inotropic support. Some piglets died within this period and formed the non-survivors group (CPB-NS group) and the remaining animals formed the CPB-6 h group. Myocardial biopsies (stained with H&E) were scored from 0 to 3 regarding histological alterations. Then, the histological data were evaluated and compared to the probes of animals handled comparable to previous piglets but without CPB (non-CPB group; n = 3) and to sibling piglets without specific treatment (control; n = 5).
Results: In the first hours after CPB six piglets out of 10 died (median 3.3 h). The animals of CPB-6 h group (n = 4) were sacrificed at the end of experiments (6 h after CPB). Although the myocardial histological score of CPB-6 h group and CPB-NS group were higher than non-CPB group (2.0 ± 0.8, 1.5 ± 0.9, and 0.8 ± 0.3 respectively), these differences were statistically not significant. But compared to control animals (score 0.3 ± 0.5) the scores of CPB-6 h and CPB-NS groups were significantly higher (p < 0.05). Between the left and the right ventricular tissue there were no significant differences.
Conclusions: Myocardial tissue alterations in newborn piglets are related to the surgical trauma and potentiated by cardiopulmonary bypass and ischemia. However, outcome is not related to the degree of tissue alteration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654882 | PMC |
http://dx.doi.org/10.1186/s13019-015-0380-0 | DOI Listing |
Sci Rep
January 2025
Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan.
Acute kidney injury (AKI) has been reported to occur in 30-70% of asphyxiated neonates. Hydrogen (H) gas became a major research focus in neonatal medicine after the identification of its robust antioxidative properties. However, the ability of H gas to ameliorate AKI is unknown.
View Article and Find Full Text PDFPorcine Health Manag
January 2025
Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
Background: Digestive disorders are one of the main health problems in suckling piglets. The correct visual identification of feces in suckling piglets is an important tool for the diagnosis of enteric diseases. The aim of the present observational study was to analyze different physicochemical parameters of the feces of suckling piglets aged 0 to 21 days: visual appearance (color and consistency), fecal dry matter (FDM) content and pH.
View Article and Find Full Text PDFFood Res Int
January 2025
Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint Gilles, France. Electronic address:
Despite the WHO recommendations in favor of breastfeeding, most infants receive infant formulas (IFs), which are complex matrices involving numerous ingredients and processing steps. Our aim was to understand the impact of the quality of the protein ingredient in IFs on gut microbiota and physiology, blood metabolites and brain gene expression. Three IFs were produced using whey proteins (WPs) from cheese whey (IF-A) or ideal whey (IFs-C and -D) and caseins, either in a micellar form (IFs-A and -C) or partly in a non-micellar form (IF-D).
View Article and Find Full Text PDFVet Microbiol
February 2025
Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Blvd. West, Saint-Hyacinthe, Québec J2S 8E3, Canada; Swine and Poultry Infectious Diseases Research Centre (CRIPA-FRQNT), Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada. Electronic address:
Vet Microbiol
February 2025
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!