Cancer therapy targeting the fibrinolytic system.

Adv Drug Deliv Rev

Division of Stem Cell Regulation, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science at the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Center for Genome and Regenerative Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.

Published: April 2016

The tumor microenvironment is recognized as a key factor in the multiple stages of cancer progression, mediating local resistance, immune-escape and metastasis. Cancer growth and progression require remodeling of the tumor stromal microenvironment, such as the development of tumor-associated blood vessels, recruitment of bone marrow-derived cells and cytokine processing. Extracellular matrix breakdown achieved by proteases like the fibrinolytic factor plasmin and matrix metalloproteases is necessary for cell migration crucial for cancer invasion and metastasis. Key components of the fibrinolytic system are expressed in cells of the tumor microenvironment. Plasmin can control growth factor bioavailability, or the regulation of other proteases leading to angiogenesis, and inflammation. In this review, we will focus on the role of the fibrinolytic system in the tumor microenvironment summarizing our current understanding of the role of the fibrinolytic factors for the modulation of the local chemokine/cytokine milieu, resulting in myeloid cell recruitment, which can promote neoangiogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.addr.2015.11.010DOI Listing

Publication Analysis

Top Keywords

fibrinolytic system
12
tumor microenvironment
12
system tumor
8
role fibrinolytic
8
fibrinolytic
5
cancer
4
cancer therapy
4
therapy targeting
4
targeting fibrinolytic
4
tumor
4

Similar Publications

Background: Hemorrhagic transformation (HT) is a complication of reperfusion therapy following acute ischemic stroke (AIS). We aimed to develop and validate a model for predicting HT and its subtypes with poor prognosis-parenchymal hemorrhage (PH), including PH-1 (hematoma within infarcted tissue, occupying < 30%) and PH-2 (hematoma occupying ≥ 30% of the infarcted tissue)-in AIS patients following intravenous thrombolysis (IVT) based on noncontrast computed tomography (NCCT) and clinical data.

Methods: In this six-center retrospective study, clinical and imaging data from 445 consecutive IVT-treated AIS patients were collected (01/2018-06/2023).

View Article and Find Full Text PDF

Blood-contacting medical devices, especially extracorporeal membrane oxygenators (ECMOs), are highly susceptible to surface-induced coagulation because of their extensive surface area. This can compromise device functionality and lead to life-threatening complications. High doses of anticoagulants, combined with anti-thrombogenic surface coatings, are typically employed to mitigate this risk, but such treatment can lead to hemorrhagic complications.

View Article and Find Full Text PDF

Background: High-risk pulmonary embolism (PE) is associated with significant mortality. Thrombolysis is the therapy of choice, while interventional thrombectomy may be a helpful strategy in case of contraindications or failed thrombolysis. However, the procedure may be complicated by catheter-induced embolization of clots and/or haemodynamic compromise.

View Article and Find Full Text PDF

Background: Although more than four years have passed since the pandemic began, SARS-CoV-2 continues to be of concern. Therefore, research into the underlying mechanisms that contribute to the development of the disease, especially in more severe forms, remains a priority. Sustained activation of the complement (CS), contact (CAS), and fibrinolytic and kinin-kallikrein systems (KKS) has been shown to play a central role in the pathogenesis of the disease.

View Article and Find Full Text PDF

Blood coagulation is a highly regulated injury response that features polymerization of fibrin fibers to prevent the passage of blood from a damaged vascular endothelium. A growing body of research seeks to monitor coagulation in microfluidic systems but fails to capture coagulation as a response to disruption of the vascular endothelium. Here we present a device that allows compression injury of a defined segment of a microfluidic vascular endothelium and the assessment of coagulation at the injury site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!