Nerve growth factor (NGF) binds to its cognate receptor TrkA and induces neuronal differentiation by activating distinct downstream signal transduction events. RabGEF1 (also known as Rabex-5) is a guanine nucleotide exchange factor for Rab5, which regulates early endosome fusion and vesicular trafficking in endocytic pathways. Here, we used the antisense (AS) expression approach to induce an NGF-dependent sustained knockdown of RabGEF1 protein expression in stable PC12 transfectants. We show that RabGEF1 is a negative regulator of NGF-induced neurite outgrowth and modulates other cellular and signaling processes that are activated by the interaction of NGF with TrkA receptors, such as cell cycle progression, cessation of proliferation, and activation of NGF-mediated downstream signaling responses. Moreover, RabGEF1 can bind to Rac1, and the activation of Rac1 upon NGF treatment is significantly enhanced in AS transfectants, suggesting that RabGEF1 is a negative regulator of NGF-induced Rac1 activation in PC12 cells. Furthermore, we show that RabGEF1 can also interact with NMDA receptors by binding to the NR2B subunit and its associated binding partner SynGAP, and negatively regulates activation of nitric oxide synthase activity induced by NMDA receptor stimulation in NGF-differentiated PC12 cells. Our data suggest that RabGEF1 is a negative regulator of TrkA-dependent neuronal differentiation and of NMDA receptor-mediated signaling activation in NGF-differentiated PC12 cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654474PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142935PLOS

Publication Analysis

Top Keywords

pc12 cells
16
ngf-differentiated pc12
12
rabgef1 negative
12
negative regulator
12
neurite outgrowth
8
signaling activation
8
activation ngf-differentiated
8
neuronal differentiation
8
regulator ngf-induced
8
rac1 activation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!