CoNi@SiO2 @TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption.

Adv Mater

Laboratory of Advanced Materials, Department of Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China.

Published: January 2016

The synthesis of CoNi@SiO2 @TiO2 core-shell and CoNi@Air@TiO2 yolk-shell microspheres is reported for the first time. Owing to the magnetic-dielectric synergistic effect, the obtained CoNi@SiO2 @TiO2 microspheres exhibit outstanding microwave absorption performance with a maximum reflection loss of -58.2 dB and wide bandwidth of 8.1 GHz (8.0-16.1 GHz, < -10 dB).

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201503149DOI Listing

Publication Analysis

Top Keywords

coni@sio2 @tio2
12
microwave absorption
8
@tio2 coni@air@tio2
4
coni@air@tio2 microspheres
4
microspheres strong
4
strong wideband
4
wideband microwave
4
absorption synthesis
4
synthesis coni@sio2
4
@tio2 core-shell
4

Similar Publications

A TiO/CdS heterostructure has been widely investigated as a potential photoanode for photoelectrochemical (PEC) water splitting for hydrogen evolution. However, the efficiency and stability still remain challenging due to the sluggish reaction dynamics for water oxidation and easy photocorrosion of CdS. Here we report a ternary TiO/CdS/IrO heterostructure with IrO as a hole transport layer for PEC glycerol oxidation coupled with hydrogen evolution.

View Article and Find Full Text PDF

Experimental and Computational Synthesis of TiO Sol-Gel Coatings.

Langmuir

January 2025

Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary.

During the experimental formation of sol-gel coatings, the colloid dispersions go through a drying process, and the structure of the coatings is formed as a result of complex chemical, colloidal, and capillary interactions. While computer simulations provide guidelines to tune and even design the nanomaterials synthesis, simulations of coating structure formation are hitherto unknown in the literature. Based on real experiments, we establish here a ReaxFF reactive force field-based molecular dynamics simulation protocol in order to investigate and determine the role of the experimental conditions on the pore structure formation in the coatings.

View Article and Find Full Text PDF

High-Entropy Metal Interstitials Activate TiO for Robust Catalytic Oxidation.

Adv Mater

January 2025

Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China.

Substitution metal doping strategies are crucial for developing catalysts capable of activating O, but the leaching of metal dopants has greatly hindered their potential for extensive oxidation reactions under mild conditions. Here, the study develops an entropy-increase strategy to synthesize high-entropy metal (Mg, Ca, Mn, Fe, and Co) interstitial functionalized anatase TiO (HE-TiO) nanosheets, demonstrating remarkable degradation efficiency across a wide pH range and exceptional stability in a flow-by electro-catalytic reactor. Relative to that of pristine TiO, the intense lattice distortion on the (001) plane, an average lattice expansion of 2% on the (100) plane, and decrease of second shell peak of X-ray absorption spectra serve as compelling evidence for the formation of metal interstitials in HE-TiO.

View Article and Find Full Text PDF

Topological Insulator Heterojunction with Electric Dipole Domain to Boost Polysulfide Conversion in Lithium-Sulfur Batteries.

Angew Chem Int Ed Engl

January 2025

Wenzhou University, College of Chemistry and Materials Engineering, Chashan University Town, 325035, Wenzhou, CHINA.

The heterojunction materials are considered as promising electrocatalyst candidates that empower advanced lithium-sulfur (Li-S) batteries. However, the detailed functional mechanism of heterojunction materials to boost the sulfur redox reaction kinetics remains unclear. Herein, we construct a multifunctional potential well-type Bi2Te3/TiO2 topological insulator (TI) heterojunction with electric dipole domain to elucidate the synergistic mechanism, which facilitates rapid mass transport, strengthens polysulfide capture ability and accelerates polysulfide conversion.

View Article and Find Full Text PDF

In this work CS-SDAEM polymer brushes with long-chain structure were synthesized, and TiO/CS-SDAEM nanoparticles were prepared by modifying them on the TiO surface. The prepared modified membrane can effectively degrade dyes through photocatalysis and can reduce the contamination rate of the membrane during use. The separation membrane achieves efficient removal of contamination by self-cleaning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!