Numerical Methods for a Kohn-Sham Density Functional Model Based on Optimal Transport.

J Chem Theory Comput

Zentrum Mathematik, Technische Universität München, Boltzmannstraβe 3, 85747 Garching bei München, Germany.

Published: October 2014

In this paper, we study numerical discretizations to solve density functional models in the "strictly correlated electrons" (SCE) framework. Unlike previous studies, our work is not restricted to radially symmetric densities. In the SCE framework, the exchange-correlation functional encodes the effects of the strong correlation regime by minimizing the pairwise Coulomb repulsion, resulting in an optimal transport problem. We give a mathematical derivation of the self-consistent Kohn-Sham-SCE equations, construct an efficient numerical discretization for this type of problem for N = 2 electrons, and apply it to the H2 molecule in its dissociating limit.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct500586qDOI Listing

Publication Analysis

Top Keywords

density functional
8
optimal transport
8
sce framework
8
numerical methods
4
methods kohn-sham
4
kohn-sham density
4
functional model
4
model based
4
based optimal
4
transport paper
4

Similar Publications

Natural history of the hyperdominant tree, Pentaclethra macroloba (Willd.) Kuntze, in the Amazon River estuary.

Braz J Biol

January 2025

Instituto Nacional de Pesquisas da Amazônia - INPA, Programa de Pós-graduação em Ecologia - PPGEco, Manaus, AM, Brasil.

Pentaclethra macroloba is a hyperdominant species with multiple uses in the Amazon. This species tolerates varying flood amplitudes, however the effect of flood topographic gradient on its ecophysiology remains unclear. We want to know if individuals from the high (10 trees) and low (20 trees) várzea show distinct phenological patterns as a function of the flood gradient, as well as their colonization strategies and their seed predators.

View Article and Find Full Text PDF

Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.

View Article and Find Full Text PDF

Present study aimed at improving the immune and antioxidant response of Pacific white shrimp (Litopenaeus vannamei) cultured at high stocking density fed with 0.2% supplementation of lauric acid (LA) and N-acetyl-L-cysteine (NAC). Shrimp (initial average weight = 0.

View Article and Find Full Text PDF

Purpose: To investigate the relationship between nocturnal blood pressure (BP) dip and parapapillary choroidal vessel density (pCVD) in patients with normal-tension glaucoma (NTG).

Methods: This study analyzed 267 eyes of 267 untreated NTG patients who underwent 24-hour (h) intraocular pressure (IOP) and ambulatory BP monitoring in the habitual position. Patients were classified into 3 groups [non-dippers (nocturnal BP dip < 10%), dippers (nocturnal BP dip between 10% and 20%, and over-dippers (nocturnal BP dip > 20%)], and pCVDs were measured by using optical coherence tomography angiography (OCTA) images.

View Article and Find Full Text PDF

We present a comprehensive theoretical study, using state-of-the-art density functional theory simulations, of the structural and electrochemical properties of amorphous pristine and iron-doped nickel-(oxy)hydroxide catalyst films for water oxidation in alkaline solutions, referred to as NiCat and Fe:NiCat. Our simulations accurately capture the structural changes in locally ordered units, as reported by X-ray absorption spectroscopy, when the catalyst films are activated by exposure to a positive potential. We emphasize the critical role of proton-coupled electron transfer in the reversible oxidation of Ni(II) to Ni(III/IV) during this activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!