S-Nitrosylation of NF-κB p65 Inhibits TSH-Induced Na(+)/I(-) Symporter Expression.

Endocrinology

Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.

Published: December 2015

Nitric oxide (NO) is a ubiquitous signaling molecule involved in a wide variety of cellular physiological processes. In thyroid cells, NO-synthase III-endogenously produced NO reduces TSH-stimulated thyroid-specific gene expression, suggesting a potential autocrine role of NO in modulating thyroid function. Further studies indicate that NO induces thyroid dedifferentiation, because NO donors repress TSH-stimulated iodide (I(-)) uptake. Here, we investigated the molecular mechanism underlying the NO-inhibited Na(+)/I(-) symporter (NIS)-mediated I(-) uptake in thyroid cells. We showed that NO donors reduce I(-) uptake in a concentration-dependent manner, which correlates with decreased NIS protein expression. NO-reduced I(-) uptake results from transcriptional repression of NIS gene rather than posttranslational modifications reducing functional NIS expression at the plasma membrane. We observed that NO donors repress TSH-induced NIS gene expression by reducing the transcriptional activity of the nuclear factor-κB subunit p65. NO-promoted p65 S-nitrosylation reduces p65-mediated transactivation of the NIS promoter in response to TSH stimulation. Overall, our data are consistent with the notion that NO plays a role as an inhibitory signal to counterbalance TSH-stimulated nuclear factor-κB activation, thus modulating thyroid hormone biosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2015-1192DOI Listing

Publication Analysis

Top Keywords

na+/i- symporter
8
thyroid cells
8
gene expression
8
modulating thyroid
8
donors repress
8
nis gene
8
nuclear factor-κb
8
expression
5
thyroid
5
nis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!