Reducing Adiposity in a Critical Developmental Window Has Lasting Benefits in Mice.

Endocrinology

Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032.

Published: February 2016

Although most adults can lose weight by dieting, a well-characterized compensatory decrease in energy expenditure promotes weight regain more than 90% of the time. Using mice with impaired hypothalamic leptin signaling as a model of early-onset hyperphagia and obesity, we explored whether this unfavorable response to weight loss could be circumvented by early intervention. Early-onset obesity was associated with impairments in the structure and function of brown adipose tissue mitochondria, which were ameliorated by weight loss at any age. Although decreased sympathetic tone in weight-reduced adults resulted in net reductions in brown adipose tissue thermogenesis and energy expenditure that promoted rapid weight regain, this was not the case when dietary interventions were initiated at weaning. Enhanced energy expenditure persisted even after mice were allowed to resume overeating, leading to lasting reductions in adiposity. These findings reveal a time window when dietary interventions can produce metabolic improvements that are stably maintained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733128PMC
http://dx.doi.org/10.1210/en.2015-1753DOI Listing

Publication Analysis

Top Keywords

energy expenditure
12
weight regain
8
weight loss
8
brown adipose
8
adipose tissue
8
dietary interventions
8
weight
5
reducing adiposity
4
adiposity critical
4
critical developmental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!