In many situations, weak interactions between radicals and their environment potentially influence their properties and reactivity. We computed benchmark binding energies of 12 binary complexes involving radicals, using basis set extrapolated coupled cluster theory with up to CCSDT(Q) excitations plus corrections for core correlation and relativistic effects. The set was comprised of both electron-rich and electron-poor small radicals which were either neutral or positively charged. The radicals were complexed with the closed-shell polar (model) solvent molecules H2O and HF. On the basis of these accurate ab initio binding energies, we assess the performance of many modern DFT functionals for these radical-solvent molecule interactions. Radical hydrogen bonded complexes are well-described by most DFT methods, but two-center-three-electron interactions are at least slightly overbound by most functionals evaluated here, including range-separated functionals. No such systematic error was found for electron-rich metal-water complexes. None of the functionals tested yield chemical accuracy for all types of complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ct300846m | DOI Listing |
Food Chem X
January 2025
Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
The poor structure stability and low bioavailability of lycopene (LY) hampers the wide application in food field. Thus, it is crucial to explore novel deliver carrier for LY based on protein-flavonoid complexes. In this study, the noncovalent interaction mechanism between β-lactoglobulin (β-LG) and flavonoids (apigenin (API), luteolin (LUT), myricetin (MY), apigenin-7-O-glucoside, luteolin-7-O-glucoside, and myricetrin) under ultrasound treatment was explored.
View Article and Find Full Text PDFFront Big Data
January 2025
School of Information Science and Technology, Shihezi University, Xinjiang, China.
Predictions of student performance are important to the education system as a whole, helping students to know how their learning is changing and adjusting teachers' and school policymakers' plans for their future growth. However, selecting meaningful features from the huge amount of educational data is challenging, so the dimensionality of student achievement features needs to be reduced. Based on this motivation, this paper proposes an improved Binary Snake Optimizer (MBSO) as a wrapped feature selection model, taking the Mat and Por student achievement data in the UCI database as an example, and comparing the MBSO feature selection model with other feature methods, the MBSO is able to select features with strong correlation to the students and the average number of student features selected reaches a minimum of 7.
View Article and Find Full Text PDFSci Data
January 2025
School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210000, China.
Travelable area boundaries not only constrain the movement of field robots but also indicate alternative guiding routes for dynamic objects. Publicly available road boundary datasets have outlined boundaries by binary segmentation labels. However, hard post-processes have to be done to extract from detected boundaries further semantics including the shapes of the boundaries and guiding routes, which poses challenges to a real-time visual navigation system without detailed prior maps.
View Article and Find Full Text PDFAdv Mater
January 2025
Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands.
Current challenges in tissue engineering include creation of extracellular environments that support and interact with cells using biochemical, mechanical, and structural cues. Spatial control over these cues is currently limited due to a lack of suitable fabrication techniques. This study introduces Xolography, an emerging dual-color light-sheet volumetric printing technology, to achieve control over structural and mechanical features for hydrogel-based photoresins at micro- to macroscale while printing within minutes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Nishi, Gakuen-Kibanadai, Miyazaki, 889-2192, Japan.
The ligand-docking behavior of hevein, the major latex protein from the rubber tree Hevea brasiliensis (Euphorbiaceae), has been investigated by the unguided molecular dynamics (MD) simulation method. An oligosaccharide molecule, initially placed in an arbitrary position, was allowed to move around hevein for a prolonged simulation time, on the order of microseconds, with the expectation of spontaneous ligand docking of the oligosaccharide molecule to the binding site of hevein. In the binary solution system consisting of a hevein molecule and a chito-trisaccharide (GlcNAc) molecule, three out of the six separate simulation runs successfully reproduced the complex structure of the observed binding from.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!