Background: The aim of this study was to detect fungi in atherosclerotic plaques and investigate their possible role in atherosclerosis.

Methods: Coronary atherosclerotic plaques specimen were obtained from patients with atherosclerosis. Direct examination, culture, histopathology study, PCR and sequencing were performed to detect/identify the mycotic elements in the plaques. Age, sex, smoking, obesity, hypertension, hyperlipidemia, family history of heart diseases and diabetes were considered and data were analyzed using Chi Square test by SPSS version 15.

Results: A total of 41 specimens were analyzed. Direct examination for fungal elements was negative in all cases but in culture only one specimen grew as a mold colony. The presence of fungal elements were confirmed in 6 and 2 tissue sections stained by Gomori methenamine silver and Hematoxylin and Eosin methods, respectively. Using PCR, 11 cases were positive for fungi. The DNA sequence analysis of six positive specimens which were randomly selected revealed fungi as Candida albicans (n=3), Candida guilliermondii (n=2) and Monilia sp. (n=1).

Conclusion: A significant association between the presence of fungi in atherosclerotic plaques and severity of atherogenesis and atherosclerotic disease was not found. This could be due to limited numbers of patients included in our study. However, the presence of fungal elements in 26.8% of our specimens is considerable and the results does not exclude the correlation between the presence of fungi with atherosclerosis and coronary artery disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4645732PMC

Publication Analysis

Top Keywords

fungal elements
16
atherosclerotic plaques
16
fungi atherosclerotic
8
direct examination
8
presence fungal
8
presence fungi
8
elements
5
atherosclerotic
5
plaques
5
fungi
5

Similar Publications

Modeling suction of unsaturated granular soil treated with biochar in plant microbial fuel cell bioelectricity system.

Sci Rep

January 2025

Departamento de Ciencias de la Construcción, Facultad de Ciencias de la Construcción Ordenamiento Territorial, Universidad Tecnológica Metropolitana, Santiago, Chile.

There is an initiative driven by the carbon-neutrality nature of biochar in recent times, where various countries across Europe and North America have introduced perks to encourage the production of biochar for construction purposes. This objective aligns with the zero greenhouse emission targets set by COP27 for 2050. This research work seeks to assess the effectiveness of biochar in soils with varying grain size distributions in enhancing the soil-water characteristic curve (SWCC).

View Article and Find Full Text PDF

The synthesis of nanomaterials from PGPB is an exciting approach and it's often used in agriculture as nano-fertilizers and nano-pesticides. The present study reports a new approach to biosynthesis of silver nanoparticles (AgNP), using bacterial metabolites as agents to reduce Ag, which will remain as coating agents able to prevent microbial growth. Silver NP were biosynthesized using the bacterial metabolites produced by the beneficial strain Pseudomonas sp.

View Article and Find Full Text PDF

The butterfly effect of the strain richness influences the efficacy of microbiota transplantation.

Cell Host Microbe

January 2025

Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China; Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu 210011, China. Electronic address:

Strain-level variation in the gut microbiome modulates its impact on host health. Recently in Nature, Chen-Liaw et al. propose that strain richness is a crucial element in the gut ecosystem, thus influencing efficacy of fecal microbiota transplantation, and provide a theoretical foundation for optimizing microbiota-based treatments and developing microbiota medicine.

View Article and Find Full Text PDF

Linking E. coli to fibrosis in Crohn's disease.

Cell Host Microbe

January 2025

The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD School of Medicine, University College Dublin, Dublin, Ireland. Electronic address:

Intestinal fibrosis associated with Crohn's disease is a serious yet poorly understood clinical complication. In this issue of Cell Host & Microbe, Ahn and colleagues provide evidence that the adherent intestinal E. coli produced the metallophore yersiniabactin, which sequesters zinc to drive intestinal fibrosis in a HIF-1α-dependent manner.

View Article and Find Full Text PDF

Increasing pesticide diversity impairs soil microbial functions.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Pesticide application is essential for stabilizing agricultural production. However, the effects of increasing pesticide diversity on soil microbial functions remain unclear, particularly under varying nitrogen (N) fertilizer management practices. In this study, we investigated the stochasticity of soil microbes and multitrophic networks through amplicon sequencing, assessed soil community functions related to carbon (C), N, phosphorus (P), and sulfur (S) cycling, and characterized the dominant bacterial life history strategies via metagenomics along a gradient of increasing pesticide diversity under two N addition levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!