Unlabelled: Dendritic voltage-gated ion channels profoundly shape the integrative properties of neuronal dendrites. In epilepsy, numerous changes in dendritic ion channels have been described, all of them due to either their altered transcription or phosphorylation. In pilocarpine-treated chronically epileptic rats, we describe a novel mechanism that causes an increased proximal dendritic persistent Na(+) current (INaP). We demonstrate using a combination of electrophysiology and molecular approaches that the upregulation of dendritic INaP is due to a relief from polyamine-dependent inhibition. The polyamine deficit in hippocampal neurons is likely caused by an upregulation of the degrading enzyme spermidine/spermine acetyltransferase. Multiphoton glutamate uncaging experiments revealed that the increase in dendritic INaP causes augmented dendritic summation of excitatory inputs. These results establish a novel post-transcriptional modification of ion channels in chronic epilepsy and may provide a novel avenue for treatment of temporal lobe epilepsy.
Significance Statement: In this paper, we describe a novel mechanism that causes increased dendritic persistent Na(+) current. We demonstrate using a combination of electrophysiology and molecular approaches that the upregulation of persistent Na(+) currents is due to a relief from polyamine-dependent inhibition. The polyamine deficit in hippocampal neurons is likely caused by an upregulation of the degrading enzyme spermidine/spermine acetyltransferase. Multiphoton glutamate uncaging experiments revealed that the increase in dendritic persistent Na current causes augmented dendritic summation of excitatory inputs. We believe that these results establish a novel post-transcriptional modification of ion channels in chronic epilepsy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6605494 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0493-15.2015 | DOI Listing |
Cancer Lett
January 2025
. Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. Electronic address:
Tertiary lymphoid structures (TLSs) are ectopic immune cell clusters formed in nonlymphoid tissues affected by persistent inflammation, such as in cancer and prolonged infections. They have features of the structure and function of secondary lymphoid organs, featuring central CD20+ B cells, surrounded by CD3+ T cells, CD21+ follicular dendritic cells, and CD68+ macrophages, with a complex vascular system. TLS formation is governed by lymphotoxin-α1β2, TNF, and chemokines like CCL19, CCL21, and CXCL13, differing from secondary lymphoid organ development in developing later in life at sites of chronic inflammation.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:
Mutation or deletion of the deubiquitinase USP7 causes Hao-Fountain syndrome (HAFOUS), which is characterized by speech delay, intellectual disability, and aggressive behavior and highlights important unknown roles of USP7 in the nervous system. Here, we conditionally delete USP7 in glutamatergic neurons in the mouse forebrain, triggering disease-relevant phenotypes, including sensorimotor deficits, impaired cognition, and aggressive behavior. Although USP7 deletion induces p53-dependent neuronal apoptosis, most behavioral abnormalities in USP7 conditional knockout mice persist following p53 loss.
View Article and Find Full Text PDFJ Allergy Clin Immunol
January 2025
Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz; Department of Immunology, Mayo Clinic Rochester, Rochester, Minn; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Ariz.
Over the past two decades, mechanistic studies of allergic and type 2 (T2)-mediated airway inflammation have led to multiple approved therapies for the treatment of moderate-to-severe asthma. The approval and availability of these monoclonal antibodies targeting immunoglobulin E, a type 2 cytokine (IL-5) and/or cytokine receptors (IL-5Rα, IL-4Rα) has been central to the progresses made in the management of moderate-to-severe asthma over this period. However, there are persistent gaps in clinician's ability to provide precise care given that many patients with type 2-high asthma do not respond to the IgE or T2 cytokine-targeting therapies and patients with type 2-low asthma have limited therapeutic options.
View Article and Find Full Text PDFElife
January 2025
Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE).
View Article and Find Full Text PDFFront Immunol
January 2025
Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy.
Introduction: Acute COVID-19 infection causes significant alterations in the innate and adaptive immune systems. While most individuals recover naturally, some develop long COVID (LC) syndrome, marked by persistent or new symptoms weeks to months after SARS-CoV-2 infection. Despite its prevalence, there are no clinical tests to distinguish LC patients from those fully recovered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!