Bordetella bronchiseptica and B. pertussis are Gram-negative bacteria that cause respiratory diseases in animals and humans. The current incidence of whooping cough or pertussis caused by B. pertussis has reached levels not observed since the 1950s. Although pertussis is traditionally known as an acute childhood disease, it has recently resurged in vaccinated adolescents and adults. These individuals often become silent carriers, facilitating bacterial circulation and transmission. Similarly, vaccinated and non-vaccinated animals continue to be carriers of B. bronchiseptica and shed bacteria resulting in disease outbreaks. The persistence mechanisms of these bacteria remain poorly characterized. It has been proposed that adoption of a biofilm lifestyle allows persistent colonization of the mammalian respiratory tract. The history of Bordetella biofilm research is only a decade long and there is no single review article that has exclusively focused on this area. We systematically discuss the role of Bordetella factors in biofilm development in vitro and in the mouse respiratory tract. We further outline the implications of biofilms to bacterial persistence and transmission in humans and for the design of new acellular pertussis vaccines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4830220 | PMC |
http://dx.doi.org/10.1093/femspd/ftv108 | DOI Listing |
J Med Internet Res
January 2025
Department of Cardiology, Yonsei University College of Medicine, Seoul, Republic of Korea.
Background: Efficient emergency patient transport systems, which are crucial for delivering timely medical care to individuals in critical situations, face certain challenges. To address this, CONNECT-AI (CONnected Network for EMS Comprehensive Technical-Support using Artificial Intelligence), a novel digital platform, was introduced. This artificial intelligence (AI)-based network provides comprehensive technical support for the real-time sharing of medical information at the prehospital stage.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Center of Data and Knowledge Integration for Health, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil.
Importance: Congenital Zika syndrome (CZS) can lead to a range of developmental and neurological issues, which increases the risk of early death. However, the all-cause and cause-specific mortality in children with CZS in the first 5 years of life remain unknown.
Objective: To compare the hazard of all-cause and cause-specific mortality before age 5 years among children with and without CZS in Brazil.
Int Arch Occup Environ Health
January 2025
Department of Quantitative Methods, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
Purpose: This study aimed to identify distinct patterns of pesticide poisoning in Brazil through the cluster analysis of epidemiological data from 2011 to 2019.
Methods: A cross-sectional analysis of 49,233 confirmed pesticide poisoning cases was conducted using multiple correspondence analysis and hierarchical clustering. Data from the Brazilian Notifiable Diseases Information System were analyzed by region, demographics, and exposure types.
Immunohorizons
January 2025
Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.
Influenza virus infects millions each year, contributing greatly to human morbidity and mortality. Upon viral infection, pathogen-associated molecular patterns activate pattern recognition receptors on host cells, triggering an immune response. The CD209 protein family, homologs of DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin), is thought to modulate immune responses to viruses.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
Current hydrogel strain sensors have never been integrated into dynamic organ-on-a-chip (OOC) due to the lack of sensitivity in aqueous cell culture systems. To enhance sensing performance, a novel strain sensor is presented in which the MXene layer is coated on the bottom surface of a pre-stretched anti-swelling hydrogel substrate of di-acrylated Pluronic F127 (F127-DA) and chitosan (CS) for isolation from the cell culture on the top surface. The fabricated strain sensors display high sensitivity (gauge factor of 290.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!