Cardiomyocyte VEGF Regulates Endothelial Cell GPIHBP1 to Relocate Lipoprotein Lipase to the Coronary Lumen During Diabetes Mellitus.

Arterioscler Thromb Vasc Biol

From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.).

Published: January 2016

Objective: Lipoprotein lipase (LPL)-mediated triglyceride hydrolysis is the major source of fatty acid for cardiac energy. LPL, synthesized in cardiomyocytes, is translocated across endothelial cells (EC) by its transporter glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1). Previously, we have reported an augmentation in coronary LPL, which was linked to an increased expression of GPIHBP1 following moderate diabetes mellitus. We examined the potential mechanism by which hyperglycemia amplifies GPIHBP1.

Approach And Results: Exposure of rat aortic EC to high glucose induced GPIHBP1 expression and amplified LPL shuttling across these cells. This effect coincided with an elevated secretion of heparanase. Incubation of EC with high glucose or latent heparanase resulted in secretion of vascular endothelial growth factor (VEGF). Primary cardiomyocytes, being a rich source of VEGF, when cocultured with EC, restored EC GPIHBP1 that is lost because of cell passaging. Furthermore, recombinant VEGF induced EC GPIHBP1 mRNA and protein expression within 24 hours, an effect that could be prevented by a VEGF neutralizing antibody. This VEGF-induced increase in GPIHBP1 was through Notch signaling that encompassed Delta-like ligand 4 augmentation and nuclear translocation of the Notch intracellular domain. Finally, cardiomyocytes from severely diabetic animals exhibiting attenuation of VEGF were unable to increase EC GPIHBP1 expression and had lower LPL activity at the vascular lumen in perfused hearts.

Conclusion: EC, as the first responders to hyperglycemia, can release heparanase to liberate myocyte VEGF. This growth factor, by activating EC Notch signaling, is responsible for facilitating GPIHBP1-mediated translocation of LPL across EC and regulating LPL-derived fatty acid delivery to the cardiomyocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.115.306774DOI Listing

Publication Analysis

Top Keywords

gpihbp1
8
lipoprotein lipase
8
diabetes mellitus
8
fatty acid
8
high glucose
8
induced gpihbp1
8
gpihbp1 expression
8
growth factor
8
increase gpihbp1
8
notch signaling
8

Similar Publications

Pathogenicity assessment of genetic variants identified in patients with severe hypertriglyceridemia: novel cases of Familial Chylomicronemia Syndrome from the Dyslipidemia Registry of the Spanish Atherosclerosis Society.

Genet Med

January 2025

Lipids and Atherosclerosis Laboratory, Department of Medicine and Dermatology, Centro de Investigaciones Médico Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA -Plataforma Bionand), University of Málaga, Málaga, Spain; Lipid Unit. Internal Medicine Service. University Hospital Virgen de la Victoria, Málaga, Spain.

Purpose: Genetic testing is required to confirm a diagnosis of familial chylomicronemia syndrome (FCS). We assessed the pathogenicity of variants identified in the FCS canonical genes to diagnose FCS cases.

Methods: 245 patients with severe hypertriglyceridemia underwent next-generation sequencing.

View Article and Find Full Text PDF

Background: Metabolism alteration is a common complication of rheumatic arthritis (RA). This work investigated the reason behind RA-caused triglyceride (TG) changes.

Methods: Fresh RA patients' whole blood was transfused into NOD-SCID mice.

View Article and Find Full Text PDF

Background: Familial chylomicronemia syndrome (FCS) is diagnosed by genetic or non-genetic criteria.

Objective: To assess responses to treatment of apolipoprotein (apo)C-III, triglycerides, and pancreatitis events in patients with FCS-based diagnostic methods.

Methods: APPROACH enrolled 66 patients with FCS randomized to volanesorsen or placebo for 12 months.

View Article and Find Full Text PDF

Competitive displacement of lipoprotein lipase from heparan sulfate is orchestrated by a disordered acidic cluster in GPIHBP1.

J Lipid Res

January 2025

Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement.

View Article and Find Full Text PDF

Genetic basis of hypertriglyceridemia.

Clin Investig Arterioscler

December 2024

Unidad de Lípidos y Riesgo Cardiovascular, Servicio de Medicina Interna, Complejo Hospitalario Universitario de A Coruña, A Coruña, España. Electronic address:

The development of massive sequencing techniques and guidelines for assessing the pathogenicity of variants are allowing us the identification of new cases of familial chylomicronemia syndrome (FCS) mostly in the LPL gene, less frequently in GPIHBP1 and APOA5, and with even fewer cases in LMF1 and APOC2. From the included studies, it can be deduced that, in cases with multifactorial chylomicronemia syndrome (MCS), both loss-of-function variants and common variants in canonical genes for FCH contribute to the manifestation of this other form of chylomicronemia. Other common and rare variants in other triglyceride metabolism genes have been identified in MCS patients, although their real impact on the development of severe hypertriglyceridemia is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!