Thrombin-induced cellular response in platelets not only requires protease-activated receptors (PARs), but also involves another thrombin receptor, the glycoprotein Ib-IX complex (GPIb-IX). It remains controversial how thrombin binding to GPIb-IX stimulates platelet responses. It was proposed that GPIb-IX serves as a dock that facilitates thrombin cleavage of protease-activated receptors, but there are also reports suggesting that thrombin binding to GPIb-IX induces platelet activation independent of PARs. Here we show that GPIb is neither a passive thrombin dock nor a PAR-independent signaling receptor. We demonstrate a novel signaling-mediated cooperativity between PARs and GPIb-IX. Low-dose thrombin-induced PAR-dependent cell responses require the cooperativity of GPIb-IX signaling, and conversely, thrombin-induced GPIb-IX signaling requires cooperativity of PARs. This mutually dependent cooperativity requires a GPIb-IX-specific 14-3-3-Rac1-LIMK1 signaling pathway, and activation of this pathway also requires PAR signaling. The cooperativity between GPIb-IX signaling and PAR signaling thus drives platelet activation at low concentrations of thrombin, which are important for in vivo thrombosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742550PMC
http://dx.doi.org/10.1182/blood-2015-04-638387DOI Listing

Publication Analysis

Top Keywords

protease-activated receptors
12
platelet activation
12
gpib-ix signaling
12
signaling-mediated cooperativity
8
glycoprotein ib-ix
8
gpib-ix
8
thrombin binding
8
binding gpib-ix
8
cooperativity pars
8
cooperativity gpib-ix
8

Similar Publications

Autoimmune diseases are complex conditions characterized by immune-mediated tissue damage and chronic inflammation. Protease-activated receptor 2 (Par2) has been implicated in these diseases, exhibiting dual roles that complicate its therapeutic potential. This review examines the perplexing functions of Par2, which promotes inflammation through immune cell activation while facilitating tissue healing in damaged organs.

View Article and Find Full Text PDF

The Intricate Relationship Between Pulmonary Fibrosis and Thrombotic Pathology: A Narrative Review.

Cells

December 2024

Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy.

Idiopathic pulmonary fibrosis (IPF) is associated with a significantly increased risk of thrombotic events and mortality. This review explores the complex bidirectional relationship between pulmonary fibrosis and thrombosis, discussing epidemiological evidence, pathogenetic mechanisms, and therapeutic implications, with a particular focus on the emerging role of extracellular vesicles (EVs) as crucial mediators linking fibrosis and coagulation. Coagulation factors directly promote fibrosis, while fibrosis itself activates thrombotic pathways.

View Article and Find Full Text PDF

USP34 regulates endothelial PAR1 mRNA transcript expression and cellular signaling.

Mol Biol Cell

December 2024

Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093.

Signaling by G protein-coupled receptors (GPCRs) is regulated by temporally distinct processes including receptor desensitization, internalization, and lysosomal sorting, and are tightly controlled by post-translational modifications. While the role of phosphorylation in regulating GPCR signaling is well studied and established, the mechanisms by which other post-translational modifications, such as ubiquitination, regulate GPCR signaling are not clearly defined. We hypothesize that GPCR ubiquitination and deubiquitination is critical for proper signaling and cellular responses.

View Article and Find Full Text PDF

Quantitative transcriptomics offers a new way to obtain a detailed picture of freshly isolated cells. By direct isolation, the cells are unaffected by in vitro culture, and the isolation at cold temperatures maintains the cells relatively unaltered in phenotype by avoiding activation through receptor cross-linking or plastic adherence. Simultaneous analysis of several cell types provides the opportunity to obtain detailed pictures of transcriptomic differences between them.

View Article and Find Full Text PDF

Intercellular synergy between protease-activated receptors 1 and 4 during mouse development.

J Thromb Haemost

December 2024

Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!