Sensory-guided fractionation of a roasted coffee beverage revealed a highly polar, bitter-tasting subfraction, from which the furokaurane glucoside mozambioside was isolated and identified in its chemical structure by means of HDMS and NMR spectra. Sensory evaluation revealed a bitter taste recognition threshold of 60 (± 10) μmol/L. UPLC-HDMS quantitation of raw coffee beans showed that Arabica coffees contained 396-1188 nmol/g mozambioside, whereas only traces (<5 nmol/g) were detected in Robusta coffees, thus suggesting that mozambioside can be used as an analytical marker for Arabica coffee. Roasted Arabica contained a substantially reduced concentration (232 ± 37 nmol/g), indicating partial degradation of mozambioside during coffee roasting. Mozambioside was nearly quantitatively extracted into the aqueous brew during coffee-making (86-98%).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.5b04847 | DOI Listing |
J Agric Food Chem
December 2015
Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Strasse 34, 85354 Freising, Germany.
Sensory-guided fractionation of a roasted coffee beverage revealed a highly polar, bitter-tasting subfraction, from which the furokaurane glucoside mozambioside was isolated and identified in its chemical structure by means of HDMS and NMR spectra. Sensory evaluation revealed a bitter taste recognition threshold of 60 (± 10) μmol/L. UPLC-HDMS quantitation of raw coffee beans showed that Arabica coffees contained 396-1188 nmol/g mozambioside, whereas only traces (<5 nmol/g) were detected in Robusta coffees, thus suggesting that mozambioside can be used as an analytical marker for Arabica coffee.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!