Detection of the Phosphorylation of the Estrogen Receptor α as an Outcome of GPR30 Activation.

Methods Mol Biol

Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA, 70118, USA.

Published: August 2016

Phosphorylation of the serine residues in estrogen receptor (ER) α is important in transcriptional activation. Hence, methods to detect such posttranslational modification events are valuable. We describe, in detail, the analysis of the phosphorylated ERα by electrophoretic separation of proteins and subsequent immuno-blotting techniques. In particular, phosphorylation of the ERα is one possible outcome of activation of the putative membrane estrogen receptor (mER), GPR30. Hence, phosphorylation represents a cross talk event between GPR30 and ERα and may be important in estrogen-regulated physiology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-3127-9_36DOI Listing

Publication Analysis

Top Keywords

estrogen receptor
12
detection phosphorylation
4
phosphorylation estrogen
4
receptor outcome
4
outcome gpr30
4
gpr30 activation
4
activation phosphorylation
4
phosphorylation serine
4
serine residues
4
residues estrogen
4

Similar Publications

Classical tissue recombination experiments demonstrate that cell-fate determination along the anterior-posterior axis of the Müllerian duct occurs prior to postnatal day 7 in mice. However, little is known about how these cell types are maintained in adults. In this study, we provide genetic evidence that a balance between antagonistic retinoic acid (RA) and estrogen signaling activity is required to maintain simple columnar cell fate in adult uterine epithelium.

View Article and Find Full Text PDF

Objectives: To study the predictive role of tumor-associated neutrophils in early luminal HER2-negative breast cancer.

Materials And Methods: This is a retrospective study conducted on 60 women cases aged from 31 to 79 years underwent surgery for luminal HER2-negative ductal breast cancer in tertiary care cancer centre. We first estimated basic morphological signs: tumor size, tumor grade (by Nottingham Histologic Score), tumor infiltrating lymphocytes (TILs), Lymphovascular invasion, hormonal receptors status, proliferative index, and regional lymph nodes metastasis.

View Article and Find Full Text PDF

An Optimized Protocol for Simultaneous Propagation of Patient-derived Organoids and Matching CAFs.

Bio Protoc

January 2025

Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Recurrent hormone receptor-positive (HR+) breast cancer is a leading cause of cancer mortality in women. Recurrence and resistance to targeted therapies have been difficult to study due to the long clinical course of the disease, the complex nature of resistance, and the lack of clinically relevant model systems. Existing models are limited to a few HR+ cell lines, organoid models, and patient-derived xenograft models, all lacking components of the human tumor microenvironment.

View Article and Find Full Text PDF

Objective: This study aims to elucidate the primary signaling communication among papillary craniopharyngioma (PCP) tumor cells.

Methods: Five samples of PCP were utilized for single-cell RNA sequencing. The most relevant ligand and receptor interactions among different cells were calculated using the CellChat package in R software.

View Article and Find Full Text PDF

Introduction: Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that affects various body systems, including the skin and facial features. Estrogen promotes lupus in human and mouse models of SLE. In this study, we conducted an in vivo study to investigate the relationship between two estrogen receptors (ERα and ERβ) and platelet-activating factor acetylhydrolase (PAF-AH) on the symptoms of SLE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!