Purification of Histone Lysine Methyltransferase SMYD2 and Co-Crystallization with a Target Peptide from Estrogen Receptor α.

Methods Mol Biol

Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI, 48201, USA.

Published: September 2016

Methylation of estrogen receptor α by the histone lysine methyltransferase SMYD2 regulates ERα chromatin recruitment and its target gene expression. This protocol describes SMYD2 purification and crystallization of SMYD2 in complex with an ERα peptide. Recombinant SMYD2 is overexpressed in Escherichia coli cells. After release from the cells by French Press, SMYD2 is purified to apparent homogeneity with multiple chromatography methods. Nickel affinity column purifies SMYD2 based on specific interaction of its 6×His tag with the bead-immobilized nickel ions. Desalting column is used for protein buffer exchange. Gel filtration column purifies SMYD2 based on molecular size. The entire purification process is monitored and analyzed by SDS-polyacrylamide gel electrophoresis. Crystallization of SMYD2 is performed with the hanging drop vapor diffusion method. Crystals of the SMYD2-ERα peptide complex are obtained by microseeding using seeding bead. This method can give rise to large size of crystals which are suitable for X-ray diffraction data collection. X-ray crystallographic study of the SMYD2-ERα complex can provide structural insight into posttranslational regulation of ERα signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-3127-9_16DOI Listing

Publication Analysis

Top Keywords

smyd2
9
histone lysine
8
lysine methyltransferase
8
methyltransferase smyd2
8
estrogen receptor
8
crystallization smyd2
8
column purifies
8
purifies smyd2
8
smyd2 based
8
purification histone
4

Similar Publications

Unveiling Smyd-2's Role in Cytoplasmic Nrf-2 Sequestration and Ferroptosis Induction in Hippocampal Neurons After Cerebral Ischemia/Reperfusion.

Cells

November 2024

School of Pharmacy, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, China.

SET and MYND Domain-Containing 2 (Smyd-2), a specific protein lysine methyltransferase (PKMT), influences both histones and non-histones. Its role in cerebral ischemia/reperfusion (CIR), particularly in ferroptosis-a regulated form of cell death driven by lipid peroxidation-remains poorly understood. This study identifies the expression of Smyd-2 in the brain and investigates its relationship with neuronal programmed cell death (PCD).

View Article and Find Full Text PDF

Allosteric regulation allows proteins to dynamically respond to environmental cues by modulating activity at sites away from the catalytic center. Despite its importance, the SET-domain protein lysine methyltransferase superfamily has been understudied. Here, we present four crystal structures of SMYD2, a unique family member with a MYND domain.

View Article and Find Full Text PDF

Hypoxic microenvironment plays a critical role in solid tumor growth, metastasis and angiogenesis. Hypoxia-inducible factors (HIFs), which are canonical transcription factors in response to hypoxia, are stabilized under hypoxia and coordinate the process of hypoxia-induced gene expression, leading to cancer progression. Increasing evidence has uncovered that long noncoding RNAs (lncRNAs), which are closely associated with cancer, play crucial roles in hypoxia-mediated HCC progression, while the mechanisms are largely unknown.

View Article and Find Full Text PDF

: Damage to renal tubular cells (RTCs) represents a critical pathological manifestation in calcium oxalate (CaOx) stone disease, but the underlying mechanism remains elusive. Energy metabolism reprogramming is a vital influencer of RTC survival, and SMYD2 is a histone methylation transferase that has been extensively implicated in various metabolic disorders. Hence, this research aimed to identify whether SMYD2 induces the reprogramming of energy metabolism in RTCs exposed to CaOx nephrolithiasis.

View Article and Find Full Text PDF

The pathogenesis of Hirschsprung's disease (HSCR) is complex. Recently, it has been found that histone modifications can alter genetic susceptibility and play important roles in the proliferation, differentiation and migration of neural crest cells. H3K36 methylation plays a significant role in gene transcriptional activation and expression, but its pathogenic mechanism in HSCR has not yet been studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!