Identifying the substrates of protein kinases remains a major obstacle in the elucidation of eukaryotic signaling pathways. Promiscuity among kinases and their substrates coupled with the extraordinary plasticity of phosphorylation networks renders traditional genetic approaches or small-molecule inhibitors problematic when trying to determine the direct substrates of an individual kinase. Here we describe methods to label, enrich, and identify the direct substrates of analogue-sensitive kinases by exploiting their steric complementarity to artificial ATP analogues. Using calcium-dependent protein kinases of Toxoplasma gondii as a model for these approaches, this protocol brings together numerous advances that enable labeling of kinase targets in semi-permeabilized cells, quantification of direct labeling over background, and highly specific enrichment of targeted phosphopeptides.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-3049-4_5DOI Listing

Publication Analysis

Top Keywords

substrates analogue-sensitive
8
protein kinases
8
direct substrates
8
substrates
5
identification direct
4
direct kinase
4
kinase substrates
4
analogue-sensitive alleles
4
alleles identifying
4
identifying substrates
4

Similar Publications

High expression of the non-receptor tyrosine kinase FER is an independent prognostic factor that correlates with poor survival in breast cancer patients. To investigate whether the kinase activity of FER is essential for its oncogenic properties, we developed an ATP analogue-sensitive knock-in allele (FERASKI). Specific FER kinase inhibition in MDA-MB-231 cells reduces migration and invasion, as well as metastasis when xenografted into a mouse model of breast cancer.

View Article and Find Full Text PDF

Functional characterization of the human Cdk10/Cyclin Q complex.

Open Biol

March 2022

Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.

Cyclin-dependent kinases (CDKs) are key players in cell cycle regulation and transcription. The CDK-family member Cdk10 is important for neural development and can act as a tumour suppressor, but the underlying molecular mechanisms are largely unknown. Here, we provide an in-depth analysis of Cdk10 substrate specificity and function.

View Article and Find Full Text PDF

A chemical-genetics approach to study the role of atypical Protein Kinase C in .

Development

January 2019

Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD5 1EH, UK

Studying the function of proteins using genetics in cycling cells is complicated by the fact that there is often a delay between gene inactivation and the time point of phenotypic analysis. This is particularly true when studying kinases that have pleiotropic functions and multiple substrates. neuroblasts (NBs) are rapidly dividing stem cells and an important model system for the study of cell polarity.

View Article and Find Full Text PDF

Identifying the substrates of protein kinases remains a major obstacle in the elucidation of eukaryotic signaling pathways. Promiscuity among kinases and their substrates coupled with the extraordinary plasticity of phosphorylation networks renders traditional genetic approaches or small-molecule inhibitors problematic when trying to determine the direct substrates of an individual kinase. Here we describe methods to label, enrich, and identify the direct substrates of analogue-sensitive kinases by exploiting their steric complementarity to artificial ATP analogues.

View Article and Find Full Text PDF

The human Tribbles (TRB)-related pseudokinases are CAMK (calcium/calmodulin-dependent protein kinase)-related family members that have evolved a series of highly unusual motifs in the 'pseudocatalytic' domain. In canonical kinases, conserved amino acids bind to divalent metal ions and align ATP prior to efficient phosphoryl-transfer to substrates. However, in pseudokinases, atypical residues give rise to diverse and often unstudied biochemical and structural features that are thought to be central to cellular functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!