Geometrically Precise Building Blocks: the Self-Assembly of β-Peptides.

Chem Biol

Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia. Electronic address:

Published: November 2015

Peptides comprised entirely of β-amino acids, or β-peptides, have attracted substantial interest over the past 25 years due to their unique structural and chemical characteristics. β-Peptides form well-defined secondary structures that exhibit different geometries compared with their α-peptide counterparts, giving rise to their foldamer classification. β-Peptide foldamers can be functionalized easily and are metabolically stable and, together with the predictable side-chain topography, have led to the design of a growing number of bioactive β-peptides with a range of biological targets. The strategic engineering of chemical and topographic properties has also led to the design of β-peptide mimics of higher-order oligomers. More recently, the ability of these peptides to self-assemble into complex structures of controlled geometries has been exploited in materials applications. The focus of this mini-review is on how the unique structural features of β-peptide assemblies have been exploited in the design of self-assembled proteomimetic bundles and nanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2015.10.005DOI Listing

Publication Analysis

Top Keywords

unique structural
8
led design
8
geometrically precise
4
precise building
4
building blocks
4
blocks self-assembly
4
β-peptides
4
self-assembly β-peptides
4
β-peptides peptides
4
peptides comprised
4

Similar Publications

We report a case of a 45-year-old gentleman who presented to our major trauma centre after sustaining a penetrating high-pressure paint injection injury to the neck. This rare mechanism of injury is most commonly reported to affect the non-dominant hand, occurring due to the malfunction or misuse of industrial paint machines, causing a piercing soft tissue injury with high-pressure fluid. The unique challenges faced in managing penetrating injuries to the neck are due to the density of vital visceral structures in the region, including major blood vessels and the upper aerodigestive tract.

View Article and Find Full Text PDF

Assembly and comparative analysis of the complete mitogenome of var. , an exceptional berry plant possessing sweet leaves.

Front Plant Sci

December 2024

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou, China.

var. is a special berry plant of in the Rosaceae family. Its leaves contain high-sweetness, low-calorie, and non-toxic sweet ingredients, known as rubusoside.

View Article and Find Full Text PDF

The mu-opioid receptor (MOR) is a major target for the treatment of pain. However, opioids are prone to side effects which limit their effectiveness as analgesics and can lead to opioid use disorders or, even, lethal overdose. The systemic administration of opioid agonists makes it both very difficult to decipher their underlying circuit mechanisms of action and to limit drug action to specific receptor subpopulations to isolate therapeutic effects from adverse side effects.

View Article and Find Full Text PDF

The relentless emergence of antibiotic-resistant pathogens, particularly Gram-negative bacteria, highlights the urgent need for novel therapeutic interventions. Drug-resistant infections account for approximately 5 million deaths annually, yet the antibiotic development pipeline has largely stagnated. Venoms, representing a remarkably diverse reservoir of bioactive molecules, remain an underexploited source of potential antimicrobials.

View Article and Find Full Text PDF

Unlabelled: The organizational principles that distinguish the human brain from other species have been a long-standing enigma in neuroscience. Focusing on the uniquely evolved human cortical layers 2 and 3, we computationally reconstruct the cortical architecture for mice and humans. We show that human pyramidal cells form highly complex networks, demonstrated by the increased number and simplex dimension compared to mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!