Advancements in nano-structured materials have facilitated several applications of nanoparticles (NPs). Skin penetration of NPs is a crucial factor for designing suitable topical antibacterial agents with low systemic toxicity. Available reports focus on size-dependent skin penetration of NPs, mainly through follicular pathways. Herein, for the first time, we demonstrate a proof-of-concept study that entails variations in skin permeability and diffusion coefficients, penetration rates and depth-of-penetration of differently shaped silver NPs (AgNPs) via intercellular pathways using both in vitro and in vivo models. The antimicrobial activity of AgNPs is known. Different shapes of AgNPs may exhibit diverse antimicrobial activities and skin penetration capabilities depending upon their active metallic facets. Consideration of the shape dependency of AgNPs in antimicrobial formulations could help developing an ideal topical agent with the highest efficacy and low systemic toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4653615PMC
http://dx.doi.org/10.1038/srep16908DOI Listing

Publication Analysis

Top Keywords

skin penetration
16
penetration nps
8
low systemic
8
systemic toxicity
8
penetration
5
shape-dependent skin
4
penetration silver
4
silver nanoparticles
4
nanoparticles matter?
4
matter? advancements
4

Similar Publications

Recent studies have identified microneedle (MN) arrays as promising alternatives for transdermal drug delivery. This study investigated the properties of novel staggered MN arrays design featuring two distinct heights of MNs. The staggered MN arrays were precisely fabricated via PμSL light-cured 3D printing technology.

View Article and Find Full Text PDF

Caffeine has recently attracted attention as a potential remedy for hair loss. In the present review, we look into the molecule's possible mechanisms of action and pharmacodynamics. At the molecular level, it appears that the physiological effects of caffeine are mainly due to the molecule's interaction with adenosine pathways which leads to an increase in cAMP level and the stimulation of metabolic activity in the hair follicle.

View Article and Find Full Text PDF

The use of nanoparticulate systems for the transport of active ingredients into hair follicles has been researched for almost two decades, resulting in countless publications with a wide variety of particle types, release mechanisms and active ingredients. The production of a stable dispersion is often time-consuming and costly. In this publication, we demonstrate for the first time that simply adding diverse submicron particles to a drug solution significantly increases follicular penetration depth by over 160% to 190%, allowing the targeting of subinfundibular structures.

View Article and Find Full Text PDF

Sjögren's syndrome-related dry eye (SSDE) is a severe dry eye subtype characterized by significant immune cell attacks on the lacrimal gland. However, delivering immunosuppressive drugs to the lacrimal glands for SSDE therapy safely and sustainably poses significant challenges in clinical practice. Herein, a ROS-responsive microneedle patch with detachable functionality (CE-MN) is developed to enable straightforward and minimally invasive administration to the lacrimal gland area by penetrating the periocular skin.

View Article and Find Full Text PDF

Topical transdermal drug delivery for psoriasis remains a challenge because of the poor solubility of hydrophobic drugs and the limited penetration of the stratum corneum. In this study, a near-infrared (NIR) light-responsive thermosensitive hydrogel (PDLLA-PEG-PDLLA, PLEL)-based drug reservoir is developed that directly incorporated gold nanorods (GNRs) and methotrexate (MTX) in the sol state at low temperature, which is referred to as PLEL@GNR+MTX. The in vitro anti-psoriasis experiment indicated that, GNRs, as photothermal cores of composite hydrogel, not only triggered keratinocyte apoptosis but also promoted MTX release in a synergistic manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!