Optogenetic stimulation of neuronal repair.

Curr Biol

Helmholtz Zentrum München, Munich, Germany. Electronic address:

Published: November 2015

Environmental insult, disease or trauma can affect the physical integrity of neuronal circuits, and the inability of many neurons to regenerate injured axons invariably leads to irreversible neural dysfunction. The conserved second messenger cyclic adenosine monophosphate (cAMP) can promote axonal re-growth. Widely used pharmacological or genetic approaches to increase intracellular levels of cAMP are often inadequate for precise neural-circuit reconstruction because their activity cannot be easily timed to specific target cells. These shortcomings have prevented the controlled repair of pre-defined neurons at selected time points in whole specimens. Thus, technologies to guide neuronal repair in time and space would enable studies of neural-circuit recovery with unprecedented resolution. Towards this aim, we have implemented a proof-of-principle optogenetic method to promote the selective regeneration of refractory axons in a living vertebrate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2015.09.038DOI Listing

Publication Analysis

Top Keywords

neuronal repair
8
optogenetic stimulation
4
stimulation neuronal
4
repair environmental
4
environmental insult
4
insult disease
4
disease trauma
4
trauma affect
4
affect physical
4
physical integrity
4

Similar Publications

BoNT/Action beyond Neurons.

Toxicon

January 2025

National Council of Research (CNR), Institute of Biochemistry and Cell Biology, 00015 Monterotondo (RM), Italy.

Botulinum neurotoxin type A (BoNT/A) has expanded its therapeutic uses beyond neuromuscular disorders to include treatments for various pain syndromes and neurological conditions. Originally recognized for blocking acetylcholine release at neuromuscular junctions, BoNT/A's effects extend to both peripheral and central nervous systems. Its ability to undergo retrograde transport allows BoNT/A to modulate synaptic transmission and reduce pain centrally, influencing neurotransmitter systems beyond muscle control.

View Article and Find Full Text PDF

Central nervous system (CNS) repair after injury is a challenging process limited by inflammation and neuronal apoptosis. This study identifies Wilms' tumor 1-associating protein (WTAP) as a pivotal regulator of neuronal protection and repair through m6A methylation of STAT3 mRNA. By employing spinal cord injury (SCI) as a representative model of CNS injury, transcriptomic analyses reveal WTAP as a key mediator of pathways related to neuronal autophagy and inflammation regulation.

View Article and Find Full Text PDF

In light of the increasing importance for measuring myelin ratios - the ratio of axon-to-fiber (axon + myelin) diameters in myelin internodes - to understand normal physiology, disease states, repair mechanisms and myelin plasticity, there is urgent need to minimize processing and statistical artifacts in current methodologies. Many contemporary studies fall prey to a variety of artifacts, reducing study outcome robustness and slowing development of novel therapeutics. Underlying causes stem from a lack of understanding of the myelin ratio, which has persisted more than a century.

View Article and Find Full Text PDF

Ultrasound Evaluation of Upper Limb Sublesional Muscle Morphology in Cervical Spinal Cord Injury.

Muscle Nerve

January 2025

International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada.

Introduction/aims: Upper limb paralysis is arguably the most limiting consequence of cervical spinal cord injury (cSCI). There is limited knowledge regarding the early structural changes of muscles implicated in grasp/pinch function and upper extremity nerve transfer surgeries. We evaluated: (1) muscle size and echo intensity (EI) in subacute cSCI (2-6 months) and (2) the influence of lower motor neuron (LMN) damage on these ultrasound parameters.

View Article and Find Full Text PDF

Nanoenzyme-Anchored Mitofactories Boost Mitochondrial Transplantation to Restore Locomotor Function after Paralysis Following Spinal Cord Injury.

ACS Nano

January 2025

School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China.

Mitochondrial transplantation is a significant therapeutic approach for addressing mitochondrial dysfunction in patients with spinal cord injury (SCI), yet it is limited by rapid mitochondrial deactivation and low transfer efficiency. Here, high-quality mitochondria microfactories (HQ-Mitofactories) were constructed by anchoring Prussian blue nanoenzymes onto mesenchymal stem cells for effective mitochondrial transplantation to treat paralysis from SCI. Notably, the results demonstrated that HQ-Mitofactories could continuously produce vitality-boosting mitochondria with highly interconnected and elongated network structures under oxidative stress by scavenging excessive ROS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!