The Unitary Group Adapted State Universal Multireference Coupled Cluster (UGA-SUMRCC) theory, recently developed by us (J. Chem. Phys.2012, 137, 074104), contains exactly the right number of linearly independent cluster operators. This avoids any redundancy of the excitation manifold in a way exactly paralleling the traditional spin-orbital based SUMRCC. The choice of the linearly independent cluster operators inducing the same change of orbital occupancy becomes increasingly cumbersome if we go over to the cases of active CSFs with more than two active quasiparticles. In the present development, we explore several aspects of the UGA-SUMRCC theory: (a) The first is a variant where we have deliberately incorporated redundancy of the cluster amplitudes to simplify the working equations and have shown that it can serve as a very good approximation to the parent UGA-SUMRCC theory for states with more than two valence occupancies. This in turn suggests that it could be a useful avenue to pursue for arbitrary mh-np situation since the working equations assume simpler algebraic structure in such cases. (b) The analyses of the aspects of size extensivity are known to involve greater complexity if they involve various reduced density matrices (RDMs), since the RDMs are not size-extensive quantities. We have presented the proof for UGA-SUMRCC starting from equations containing h-p RDMs via a decomposition involving products of size-extensive cumulants and argue that it has relevance for general cases beyond the h-p model spaces. (c) A useful extension of UGA-SUMRCC lies in formulating the theory for direct calculations of energy differences of spectroscopic interest such as excitation energies, ionization potentials, and electron affinities relative to a closed shell ground state, thus providing attractive alternatives to other allied methods such as SAC-CI, CC-LRT, EOM-CC, STEOM-CC, or ADC. This extension, called UGA-based Quasi-Fock MRCC by us, also leads to exact cancellation of common correlation terms between the initial and final states. Taking a cue from the hierarchical development in Fock-space theories but keeping in mind the advantages of a state-universal (equivalently called a valence specific) theory, our formulation proposes a spin-adapted, accurate, and compact scheme for studying such energy differences. Our results demonstrate superior performance of the method as compared to EOM-CC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ct3011024 | DOI Listing |
Cardiol Rev
December 2024
Departments of Cardiology and Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY.
The number of atrial catheter ablation procedures has significantly increased in recent years, becoming a first-line treatment modality for various supraventricular tachycardias due to their safety and efficacy. Complications, ranging from mild to life-threatening, can arise during different stages of the procedure, including vascular access complications (eg, hematoma or vascular fistula formation, retroperitoneal bleeding, etc.), thromboembolic complications (eg, stroke, transient ischemic attack, air embolism, etc.
View Article and Find Full Text PDFCurr Pain Headache Rep
January 2025
Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-420, Plock, Poland.
Purpose Of Review: Migraine prevalence in females is up to 3 times higher than in males and females show higher frequency, longer duration, and increased severity of headache attacks, but the reason for that difference is not known. This narrative review presents the main aspects of sex dimorphism in migraine prevalence and discusses the role of sex-related differences in mitochondrial homeostasis in that dimorphism. The gender dimension is also shortly addressed.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Chemistry, Military Institute of Engineering, Praça General Tibúrcio 80, Rio de Janeiro, Brazil.
Context: Nitrocellulose, widely used in energetic materials, is prone to thermal and chemical degradation, compromising safety and performance. Stabilizers are molecules used in the composition of nitrocellulose-based propellants to inhibit the autocatalytic degradation process that produces nitrous gases and free nitric acids. Curcumin, (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, known for its antioxidant properties and a potential green stabilizer, was investigated using Density Functional Theory (DFT) focusing on its interaction with nitrogen dioxide.
View Article and Find Full Text PDFJ Mol Model
January 2025
School of Chemistry & Chemical Engineering, Linyi University, Linyi, 276000, China.
Context: In this work, a comparative study on the catalytic conversion of 5-hydroxymethyl furfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) on precious Pd(111) and nonprecious Cu(111) was systematically performed. On the basis of the calculated activation energy (E) and reaction energy (E), the optimal energy path for the hydrogenation of HMF (F-CHO) into BHMF (F-CHOH) on Pd(111) is as follows: F-CHO + 2H → F-CHOH + H → F-CHOH; the minimum reaction path on Cu(111) is F-CHO + 2H → F-CHO + H → F-CHOH. On Cu(111), the formation of F-CHOH from F-CHO hydrogenation is the rate-determining step because it has the highest reaction energy barrier and the smallest rate constant.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76207, United States.
Two-dimensional molybdenum ditelluride (2D MoTe) is an interesting material for artificial synapses due to its unique electronic properties and phase tunability in different polymorphs 2H/1T'. However, the growth of stable and large-scale 2D MoTe on a CMOS-compatible Si/SiO substrate remains challenging because of the high growth temperature and impurity-involved transfer process. We developed a large-scale MoTe film on a Si/SiO wafer by simple sputtering followed by lithium-ion intercalation and applied it to artificial synaptic devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!