Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We discuss molecular simulation methods for computing the phase coexistence properties of complex molecules. The strategies that we pursue are histogram-based approaches in which thermodynamic properties are related to relevant probability distributions. We first outline grand canonical and isothermal-isobaric methods for directly locating a saturation point at a given temperature. In the former case, we show how reservoir and growth expanded ensemble techniques can be used to facilitate the creation and insertion of complex molecules within a grand canonical simulation. We next focus on grand canonical and isothermal-isobaric temperature expanded ensemble techniques that provide a means to trace saturation lines over a wide range of temperatures. To demonstrate the utility of the strategies introduced here, we present phase coexistence data for a series of molecules, including n-octane, cyclohexane, water, 1-propanol, squalane, and pyrene. Overall, we find the direct grand canonical approach to be the most effective means to directly locate a coexistence point at a given temperature and the isothermal-isobaric temperature expanded ensemble scheme to provide the most effective means to follow a saturation curve to low temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ct400074p | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!