A laboratory study using a combined upflow anaerobic sludge bed (UASB) and aerobic and anoxic fixed-bed reactor system was undertaken to explore its capability for removing tetramethylammonium hydroxide (TMAH) and nitrogen from light-emitting diode wastewater. When the organic loading rate was maintained at 0.26-0.65 kg TMAH m(-3 )d(-1), the UASB reactor removed 70-100% of TMAH through methanogenesis. When the [Formula: see text] -N loading rate was maintained at 0.73-1.4 kg [Formula: see text]-N m(-3 )d(-1), the aerobic reactor oxidized 31-59% of [Formula: see text]-N to [Formula: see text]-N through nitritation. When the nitrogen loading rate was maintained at 0.42-0.75 kg N m(-3 )d(-1), the anoxic reactor removed 27-63% of nitrogen through anammox. The performance data of the combined reactor system agreed well with the stoichiometric relationships of methanogenesis, nitritation, and anammox. The batch studies showed that a higher initial TMAH concentration of up to 2520 mg L(-1) gave a higher methanogenic activity of up to 16 mL CH4 g(-1) VSS d(-1). An increase in the initial TMAH concentration of up to 500 mg L(-1) gradually decreased the activity of ammonia-oxidizing bacteria; whereas an increase in the initial TMAH concentration of up to 47 mg L(-1) imposed a marked inhibiting effect on the activity of anammox bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2015.1114029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!