Complementarity between Quantum and Classical Mechanics in Chemical Modeling. The H + HeH+ → H2 + + He Reaction: A Rigourous Test for Reaction Dynamics Methods.

J Phys Chem A

Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia, Area della Ricerca di Roma 1, 00016 Roma, Italy.

Published: December 2015

In this work we present a dynamical study of the H + HeH+ → H2+ + He reaction in a collision energy range from 0.1 meV to 10 eV, suitable to be used in applicative models. The paper extends and complements a recent work [ Phys. Chem. Chem. Phys. 2014, 16, 11662] devoted to the characterization of the reactivity from the ultracold regime up to the three-body dissociation breakup. In particular, the accuracy of the quasi-classical trajectory method below the three-body dissociation threshold has been assessed by a detailed comparison with previous calculations performed with different reaction dynamics methods, whereas the reliability of the results in the high energy range has been checked by a direct comparison with the available experimental data. Integral cross sections for several HeH+ roto-vibrational states have been analyzed and used to understand the extent of quantum effects in the reaction dynamics. By using the quasi-classical trajectory method and quantum mechanical close coupling data, respectively, in the high and low collision energy ranges, we obtain highly accurate thermal rate costants until 15 000 K including all (178) the roto-vibrational bound and quasi-bound states of HeH+. The role of the collision-induced dissociation is also discussed and explicitly calculated for the ground roto-vibrational state of HeH+.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.5b09660DOI Listing

Publication Analysis

Top Keywords

reaction dynamics
12
heh+ →
8
dynamics methods
8
collision energy
8
energy range
8
three-body dissociation
8
quasi-classical trajectory
8
trajectory method
8
heh+
5
reaction
5

Similar Publications

Functional Characteristics of the Crosstalk Between Vocal Fold Fibroblasts and Macrophages-The Role of Vibration in Vocal Fold Inflammation.

J Voice

January 2025

Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria; Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria.

Article Synopsis
  • The study explored how human vocal fold fibroblasts (hVFF) interact with macrophages in the presence of cigarette smoke extract (CSE) and vibration, focusing on vocal fold inflammation.
  • Researchers cultured hVFF with CSE, applying either static or dynamic conditions, and then measured various mRNA and protein levels to assess inflammation.
  • Findings revealed that vibration may reduce CSE-induced inflammatory responses in hVFF, suggesting potential mechanisms to address voice disorders linked to smoking-related inflammation.
View Article and Find Full Text PDF

Specific recognition mechanism of an antibody to sulfated tyrosine and its potential use in biological research.

J Biol Chem

January 2025

Department of Bioengineering, School of Engineering, The University of Tokyo; Institute of Medical Science, The University of Tokyo; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Japan. Electronic address:

Post-translational modification of proteins is a crucial biological reaction that regulates protein functions by altering molecular properties. The specific detection of such modifications in proteins has made significant contributions to molecular biology research and holds potential for future drug development applications. In HIV research, for example, tyrosine sulfation at the N-terminus of C-C chemokine receptor type 5 (CCR5) is considered to significantly enhance HIV infection efficiency.

View Article and Find Full Text PDF

Leveraging almost hydrophobic PVDF membrane and in-situ ozonation in O/UF/BAC system for superior anti-fouling and rejection performance in drinking water treatment.

Water Res

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China. Electronic address:

The almost hydrophobic PVDF membrane (PVDF matrix) commonly exhibited excellent performance in pollutant rejection but with poor anti-fouling performance. This study intended to develop the rejection performance and enhance anti-fouling of the PVDF membrane in an O/UF/BAC system for high quality water production through leveraging the advantages of in-situ ozonation and the nature of the PVDF membrane. Reduced density gradient (RDG) analysis demonstrated that the PVDF membrane exhibited excellent ozone resistance by reducing hydrogen bonds and electrostatic interactions between the membrane surface and ozone.

View Article and Find Full Text PDF

Design and synthesis of autogenous growth NiFe bimetallic phosphide catalysts on a nickel iron foam-like substrate for efficient overall water splitting.

J Colloid Interface Sci

January 2025

Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China. Electronic address:

Article Synopsis
  • The study focuses on creating effective and affordable electrocatalysts for water electrolysis, vital for improving technology in this area.
  • The authors developed a novel catalyst by anchoring carbonyl iron powder in nickel foam, leading to enhanced surface area and efficient ion movement.
  • The catalyst exhibits high activity due to a dynamic interaction between different nickel and iron phases, significantly boosting its performance in the oxygen evolution reaction.
View Article and Find Full Text PDF

Reversible Isomerization of Stiff-Stilbene by an Oriented External Electric Field.

J Am Chem Soc

January 2025

Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

Understanding and effectively controlling molecular conformational changes are essential for developing responsive and dynamic molecular systems. Here, we report that an oriented external electric field (OEEF) is an effective catalyst for the cis-trans isomerization of stiff-stilbene, a key component of overcrowded alkene-based rotary motors. This reversible isomerization occurs under ambient conditions, is free from side reactions, and has been verified using ultraperformance liquid chromatography and UV-vis absorption spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!