The cytochrome P450, CYP2C8, metabolizes more than 60 clinically used drugs as well as endogenous substances including retinoic acid and arachidonic acid. However, predictive factors for interindividual variability in the efficacy and toxicity of CYP2C8 drug substrates are essentially lacking. Recently we demonstrated that peroxisome proliferator-activated receptor alpha (PPARα), a nuclear receptor primarily involved in control of lipid and energy homeostasis directly regulates the transcription of CYP3A4. Here we investigated the potential regulation of CYP2C8 by PPARα. Two linked intronic SNPs in PPARα (rs4253728, rs4823613) previously associated with hepatic CYP3A4 status showed significant association with CYP2C8 protein level in human liver samples (N = 150). Furthermore, siRNA-mediated knock-down of PPARα in HepaRG human hepatocyte cells resulted in up to ∼60 and ∼50% downregulation of CYP2C8 mRNA and activity, while treatment with the PPARα agonist WY14,643 lead to an induction by >150 and >100%, respectively. Using chromatin immunoprecipitation scanning assay we identified a specific upstream gene region that is occupied in vivo by PPARα. Electromobility shift assay demonstrated direct binding of PPARα to a DR-1 motif located at positions -2762/-2775 bp upstream of the CYP2C8 transcription start site. We further validated the functional activity of this element using luciferase reporter gene assays in HuH7 cells. Moreover, based on our previous studies we demonstrated that WNT/β-catenin acts as a functional inhibitor of PPARα-mediated inducibility of CYP2C8 expression. In conclusion, our data suggest direct involvement of PPARα in both constitutive and inducible regulation of CYP2C8 expression in human liver, which is further modulated by WNT/β-catenin pathway. PPARA gene polymorphism could have a modest influence on CYP2C8 phenotype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631943 | PMC |
http://dx.doi.org/10.3389/fphar.2015.00261 | DOI Listing |
Front Pharmacol
January 2025
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.
Introduction: Deglycosylated azithromycin (Deg-AZM), a new transgelin agonist with positive therapeutic effects on slow transit constipation, has been approved for clinical trials in 2024. This work investigated the drug metabolism and transport of Deg-AZM to provide research data for further development of Deg-AZM.
Methods: A combination of UPLC-QTOF-MS was used to obtain metabolite spectra of Deg-AZM in plasma, urine, feces and bile.
Am J Respir Cell Mol Biol
January 2025
University of Groningen, University Medical Center Groningen, Department of Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, Netherlands.
Asthma is a genetically complex inflammatory airway disease associated with over 200 Single nucleotide polymorphisms (SNPs). However, the functional effects of many asthma-associated SNPs in lung and airway epithelial samples are unknown. Here, we aimed to conduct expression quantitative trait loci (eQTL) analysis using a meta-analysis of nasal and lung samples.
View Article and Find Full Text PDFTher Clin Risk Manag
January 2025
Departments of Medicine and Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY, USA.
Pulmonary arterial hypertension (PAH) is a rare and potentially fatal condition characterized by progressive increases in blood pressure in the arteries of the lungs. Oral selexipag, approved by the Food and Drug Administration (FDA) in 2015 for the treatment of PAH, targets prostacyclin receptors on pulmonary arterial vascular smooth muscle and endothelial cells to improve blood flow through the lungs and reduce pulmonary vascular resistance. Oral selexipag is effective, but may be discontinued due to factors like side effects, emergency conditions, or inability to take oral medication, potentially leading to severe adverse events, such as rebound pulmonary hypertension and right heart failure.
View Article and Find Full Text PDFSLAS Discov
January 2025
iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12 2781-901 Oeiras, Portugal; ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. Republica, 2780-157, Oeiras, Portugal. Electronic address:
Primary human hepatocytes (PHHs) are the preferred cell source to address liver function. Despite originating from the native tissue, one of the bottlenecks when using primary material is the donor-to-donor variability. Cryopreserved PHHs offer a high number of cells from the same donor and standardization of cell isolation and cryopreservation procedures, mitigating some of the inter-donor variability.
View Article and Find Full Text PDFDrug Metab Pharmacokinet
November 2024
Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
The previously reported Template system for the prediction of human CYP2B6-mediated reactions (Drug Metab Pharmacokinet 26 309-330, 2011) has been refined with the introduction of ideas of allowable width, Trigger-residue and the residue-initiated movement of ligands in the active site. The refined system also includes ideas of bi-molecule binding on Template. With the use of these ideas in common with other Template systems for human CYP1A1, CYP1A2, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2E1, and CYP3A4, 360 reactions of 261 distinct chemicals reported as CYP2B6 ligands were examined in the refined system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!