Sweating the small stuff: Glycoproteins in human sweat and their unexplored potential for microbial adhesion.

Glycobiology

Department of Chemistry and Biomolecular Sciences, Biomolecular Frontiers Research Centre, Macquarie University, Sydney 2109, Australia

Published: March 2016

There is increasing evidence that secretory fluids such as tears, saliva and milk play an important role in protecting the human body from infection via a washing mechanism involving glycan-mediated adhesion of potential pathogens to secretory glycoproteins. Interaction of sweat with bacteria is well established as the cause of sweat-associated malodor. However, the role of sweat glycoproteins in microbial attachment has received little, if any, research interest in the past. In this review, we demonstrate how recent published studies involving high-throughput proteomic analysis have inadvertently, and fortuitously, exposed an abundance of glycoproteins in sweat, many of which have also been identified in other secretory fluids. We bring together research demonstrating microbial adhesion to these secretory glycoproteins in tears, saliva and milk and suggest a similar role of the sweat glycoproteins in mediating microbial attachment to sweat and/or skin. The contribution of glycan-mediated microbial adhesion to sweat glycoproteins, and the associated impact on sweat derived malodor and pathogenic skin infections are unchartered new research areas that we are beginning to explore.

Download full-text PDF

Source
http://dx.doi.org/10.1093/glycob/cwv102DOI Listing

Publication Analysis

Top Keywords

microbial adhesion
12
sweat glycoproteins
12
sweat
8
secretory fluids
8
tears saliva
8
saliva milk
8
secretory glycoproteins
8
role sweat
8
microbial attachment
8
glycoproteins
7

Similar Publications

An antimicrobial and adhesive conductive chitosan quaternary ammonium salt hydrogel dressing for combined electrical stimulation and photothermal treatment to promote wound healing.

Carbohydr Polym

March 2025

Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

The aim of this study is to investigate the effect of the adhesive, conductive hydrogel on wound healing when used as a therapeutic dressing. Herein, a dressing of PVA/QCS/TP@Fe (PQTF) was designed and prepared integrating polyvinyl alcohol (PVA), chitosan quaternary ammonium salt (QCS), tea polyphenol (TP), and ferric ions (Fe) by a simple one-pot and freeze-thaw method. In view of the comprehensive properties of PQTF hydrogel, including adhesion, electrical conductivity, and swelling performance, PQTF was selected for subsequent in vitro and in vivo healing promotion studies.

View Article and Find Full Text PDF

Skin wound healing is a physiological process orchestrated by epithelial and mesenchymal cells able to restore tissue continuity by re-organizing themselves and the ECM. This research study aimed to develop an optimized in vitro experimental model of full-thickness skin, to address molecular and morphological modifications occurring in the re-epithelization and wound healing process. Wound healing starting events were investigated within an experimental window of 8 days at the molecular level by gene expression and immunofluorescence of key epidermal and dermal biomarkers.

View Article and Find Full Text PDF

Our preliminary data using bone marrow-derived macrophages (BMDMs) collected from ICR mice treated with anti-sirtuin (anti-SIRT) 1 antibody showed that uptake was significantly attenuated. We then further investigated the effect of an inhibitor of SIRT1/2, cambinol, in the progression of . The in vitro results using RAW264.

View Article and Find Full Text PDF

Inhibition of the Biofilm Formation of Plant .

Pharmaceuticals (Basel)

November 2024

School of Pharmacy, Karaganda Medical University, Gogol Street, 40, Karaganda 100012, Kazakhstan.

This review is devoted to a systematic analysis of studies aimed at investigating plant extracts, essential oils and phytochemical compounds capable of inhibiting biofilm formation. This paper investigates the effect of extracts, essential oils and individual plant compounds on inhibiting the biofilm formation of , one of the major pathogens responsible for the development of dental caries. Using cultural microbiology and molecular biology techniques, the authors describe the mechanisms by which plant samples reduce adhesion and growth.

View Article and Find Full Text PDF

Today, is still the most common cause of both local and life-threatening systemic candidiasis. The spread of resistant fungal strains has resulted in an urgent need to search for new promising antimycotics. Here, we investigated the antifungal action of the tobacco defensin NaD1 against susceptible and resistant to azoles and echinocandins strains of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!