In this study, molecularly imprinted polymer fibers for solid-phase microextraction have been prepared with a single bifunctional monomer, N,O-bismethacryloyl ethanolamine using the so-called "one monomer molecularly imprinted polymers" method, replacing the conventional combination of functional monomer and cross-linker to form high fidelity binding sites. For comparison, imprinted fibers were prepared following the conventional approach based on ethylene glycol dimethacrylate as cross-linker and methacrylic acid as monomer. The recognition performance of the new fibers was evaluated in the solid-phase microextraction of parabens, and from this study it was concluded that they provided superior performance over conventionally formulated fibers. Ultimately, real-world environmental testing on spiked solid samples was successful by the molecularly imprinted solid-phase microextraction of samples, and the relative recoveries obtained at enrichment levels of 10 ng/g of parabens were within 78-109% for soil and 83-109% for sediments with a relative standard deviation <15% (n = 3).

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.201500967DOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
16
solid-phase microextraction
16
single bifunctional
8
bifunctional monomer
8
microextraction parabens
8
solid samples
8
imprinted
5
fibers
5
monomer
5
preparation molecularly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!