Peroxiredoxin 5 prevents amyloid-beta oligomer-induced neuronal cell death by inhibiting ERK-Drp1-mediated mitochondrial fragmentation.

Free Radic Biol Med

School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea. Electronic address:

Published: January 2016

Alzheimer's disease (AD), a neurodegenerative disorder, is caused by amyloid-beta oligomers (AβOs). AβOs induce cell death by triggering oxidative stress and mitochondrial dysfunction. A recent study showed that AβO-induced oxidative stress is associated with extracellular signal-regulated kinase (ERK)-dynamin related protein 1 (Drp1)-mediated mitochondrial fission. Reactive oxygen species (ROS) are regulated by antioxidant enzymes, especially peroxiredoxins (Prxs) that scavenge H2O2. These enzymes inhibit neuronal cell death induced by various neurotoxic reagents. However, it is unclear whether Prx5, which is specifically expressed in neuronal cells, protects these cells from AβO-induced damage. In this study, we found that Prx5 expression was upregulated by AβO-induced oxidative stress and that Prx5 decreased ERK-Drp1-mediated mitochondrial fragmentation and apoptosis of HT-22 neuronal cells. Prx5 expression was affected by AβO, and amelioration of oxidative stress by N-acetyl-L-cysteine decreased AβO-induced Prx5 expression. Prx5 overexpression reduced ROS as well as RNS and apoptotic cell death but Prx5 knockdown did not. In addition, Prx5 overexpression ameliorated ERK-Drp1-mediated mitochondrial fragmentation but Prx5 knockdown did not. These results indicated that inducible Prx5 expression by AβO plays a key role in inhibiting both ERK-Drp1-induced mitochondrial fragmentation and neuronal cell death by regulating oxidative stress. Thus, Prx5 may be a new therapeutic agent for treating AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2015.11.015DOI Listing

Publication Analysis

Top Keywords

cell death
20
oxidative stress
20
mitochondrial fragmentation
16
prx5 expression
16
neuronal cell
12
erk-drp1-mediated mitochondrial
12
prx5
11
aβo-induced oxidative
8
neuronal cells
8
stress prx5
8

Similar Publications

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.

View Article and Find Full Text PDF

Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.

View Article and Find Full Text PDF

Sperm motility is the prime functional attribute for semen quality and fertility of the bull. However, the bull's age directly affects the semen quality, and the bull's fertility and productive life decline with age. Even though research on age has been conducted in the past, it is still unclear how old a bull should be maintained at artificial insemination centers.

View Article and Find Full Text PDF

Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!