Unlabelled: The genetic diversity of rotavirus A (RVA) strains is facilitated in part by genetic reassortment. Although this process of genome segment exchange has been reported frequently among mammalian RVAs, it remained unknown if mammalian RVAs also could package genome segments from avian RVA strains. We generated a simian RVA strain SA11 reassortant containing the VP4 gene of chicken RVA strain 02V0002G3. To achieve this, we transfected BSR5/T7 cells with a T7 polymerase-driven VP4-encoding plasmid, infected the cells with a temperature-sensitive SA11 VP4 mutant, and selected the recombinant virus by increasing the temperature. The reassortant virus could be stably passaged and exhibited cytopathic effects in MA-104 cells, but it replicated less efficiently than both parental viruses. Our results show that avian and mammalian rotaviruses can exchange genome segments, resulting in replication-competent reassortants with new genomic and antigenic features.

Importance: This study shows that rotaviruses of mammals can package genome segments from rotaviruses of birds. The genetic diversity of rotaviruses could be broadened by this process, which might be important for their antigenic variability. The reverse genetics system applied in the study could be useful for targeted generation and subsequent characterization of distinct rotavirus reassortant strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719627PMC
http://dx.doi.org/10.1128/JVI.02730-15DOI Listing

Publication Analysis

Top Keywords

genome segments
12
rotavirus reassortant
8
reverse genetics
8
genetics system
8
genetic diversity
8
rva strains
8
mammalian rvas
8
package genome
8
rva strain
8
generation avian-mammalian
4

Similar Publications

Genome-Wide Identification and Functional Characterization of Gene Family Reveal Its Involvement in Response to Stress in Cotton.

Int J Mol Sci

January 2025

Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.

SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.

View Article and Find Full Text PDF

Systematic Analysis of Cotton RING E3 Ubiquitin Ligase Genes Reveals Their Potential Involvement in Salt Stress Tolerance.

Int J Mol Sci

January 2025

Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China.

The Really Interesting New Gene (RING) E3 ubiquitin ligases represent the largest class of E3 ubiquitin ligases involved in protein degradation and play a pivotal role in plant growth, development, and environmental responses. Despite extensive studies in numerous plant species, the functions of RING E3 ligases in cotton remain largely unknown. In this study, we performed systematic identification, characterization, and expression analysis of genes in cotton.

View Article and Find Full Text PDF

Heat stress transcription factors (HSFs) play a critical role in orchestrating cellular responses to elevated temperatures and various stress conditions. While extensively studied in model plants, the gene family in remains unexplored, despite the availability of its sequenced genome. In this study, we employed bioinformatics approaches to identify 21 genes within the genome, revealing their uneven distribution across chromosomes.

View Article and Find Full Text PDF

Genomic-Inbreeding Landscape and Selection Signatures in the Polo Argentino Horse Breed.

Int J Mol Sci

December 2024

Departamento de Genética, Universidad de Córdoba, CN IV KM 396 Edificio Gregor Mendel, 14007 Córdoba, Spain.

Analyzing genetic variability and inbreeding trends is essential for effective breed management in animal populations. To this, the characterization of runs of homozygosity (ROH) provides a good genomic approach to study the phenomena. The Polo Argentino (PA) breed, globally recognized as the best adapted to playing polo, is known for its strong influence of Thoroughbreds, intense selective breeding, and extensive use of reproductive biotechnologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!