Background: Cold water immersion (CWI) is a technique commonly used in post-exercise recovery. However, the procedures involved in the technique may vary, particularly in terms of water temperature and immersion time, and the most effective approach remains unclear.

Objectives: The objective of this systematic review was to determine the efficacy of CWI in muscle soreness management compared with passive recovery. We also aimed to identify which water temperature and immersion time provides the best results.

Methods: The MEDLINE, EMBASE, SPORTDiscus, PEDro [Physiotherapy Evidence Database], and CENTRAL (Cochrane Central Register of Controlled Trials) databases were searched up to January 2015. Only randomized controlled trials that compared CWI to passive recovery were included in this review. Data were pooled in a meta-analysis and described as weighted mean differences (MDs) with 95% confidence intervals (CIs).

Results: Nine studies were included for review and meta-analysis. The results of the meta-analysis revealed that CWI has a more positive effect than passive recovery in terms of immediate (MD = 0.290, 95% CI 0.037, 0.543; p = 0.025) and delayed effects (MD = 0.315, 95% CI 0.048, 0.581; p = 0.021). Water temperature of between 10 and 15 °C demonstrated the best results for immediate (MD = 0.273, 95% CI 0.107, 0.440; p = 0.001) and delayed effects (MD = 0.317, 95% CI 0.102, 0.532; p = 0.004). In terms of immersion time, immersion of between 10 and 15 min had the best results for immediate (MD = 0.227, 95% 0.139, 0.314; p < 0.001) and delayed effects (MD = 0.317, 95% 0.102, 0.532, p = 0.004).

Conclusions: The available evidence suggests that CWI can be slightly better than passive recovery in the management of muscle soreness. The results also demonstrated the presence of a dose-response relationship, indicating that CWI with a water temperature of between 11 and 15 °C and an immersion time of 11-15 min can provide the best results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4802003PMC
http://dx.doi.org/10.1007/s40279-015-0431-7DOI Listing

Publication Analysis

Top Keywords

water temperature
20
immersion time
20
passive recovery
16
temperature immersion
12
delayed effects
12
immersion
8
cold water
8
water immersion
8
systematic review
8
review meta-analysis
8

Similar Publications

Aerogels hold great potential in thermal insulation, catalytic supports, adsorption, and separation, due to their low density, high porosity, and low thermal conductivity. However, their inherent mechanical fragility and limited control functionality pose substantial challenges that hinder their practical use. In this study, a strategy is developed for the fabrication of cross-linked aramid nanofiber aerogels (cANFAs) by combining internanofiber surface cross-linking with ice-templating techniques.

View Article and Find Full Text PDF

Unveiling of Hydrogen Spillover Mechanisms on Tungsten Oxide Surfaces.

J Am Chem Soc

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Hydrogen spillover is an important process in catalytic hydrogenation reactions, facilitating H activation and modulating surface chemistry of reducible oxide catalysts. This study focuses on the unveiling of platinum-induced hydrogen spillover on monoclinic tungsten trioxide (γ-WO), employing ambient pressure X-ray photoelectron spectroscopy, density functional theory calculations and microkinetic modeling to investigate the dynamic evolution of surface states at varied temperatures. At room temperature, hydrogen spillover results in the formation of W and hydrogen intermediates (hydroxyl species and adsorbed water), facilitated by Pt metal clusters.

View Article and Find Full Text PDF

The reduction of CO2 to CO provides a promising approach to the production of valuable chemicals through CO2 utilization. However, challenges persist with the rapid deactivation and insufficient activity of catalysts. Herein, we developed a soft-hard dual-template method to synthesize layered MoS2 using inexpensive and scalable templates, enabling facile regulation of sulfur vacancies by controlling the number of layers.

View Article and Find Full Text PDF

Easily Water-Synthesisable Iron-Chloranilate Frameworks as High Energy and High-Power Cathodes for Sustainable Alkali-Ion Batteries.

Angew Chem Int Ed Engl

January 2025

Universidad Complutense de Madrid Facultad de Ciencias Quimicas, Inorganic Chemistry Department, 28034, Madrid, SPAIN.

Achieving high battery performance from low-cost, easily synthesisable electrode materials is crucial for advancing energy storage technologies. Metal organic frameworks (MOFs) combining inexpensive transition metals and organic ligands are promising candidates for high-capacity cathodes. Iron-chloranilate-water frameworks are herein reported to be produced in aqueous media under mild conditions.

View Article and Find Full Text PDF

Fabrication of composite ceramic polymeric membranes for agricultural wastewater treatment.

Sci Rep

January 2025

Chemical Engineering and Pilot Plant Department, Engineering & Renewable Energy Research Institute, National Research Centre (NRC), Giza, 12622, Egypt.

Humans have contaminated water supplies with harmful compounds, including different heavy metals. Heavy metals can interfere with human and animal vital organs and metabolic processes. They are also persistent and bioaccumulative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!