A highly efficient thermo-optic microring modulator assisted by graphene.

Nanoscale

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.

Published: December 2015

Graphene's remarkable electrical and optical properties afford great potential for constructing various optoelectronic devices, including modulators, photodetectors and pulse lasers. In particular, graphene-based optical modulators were demonstrated to be featured with a broadband response, small footprint, ultrafast speed and CMOS-compatibility, which may provide an alternative architecture for light-modulation in integrated photonic circuits. While on-chip graphene modulators have been studied in various structures, most of them are based on a capacitance-like configuration subjected to complicated fabrication processes and providing a low yield of working devices. Here, we experimentally demonstrate a new type of graphene modulator by employing graphene's electrical and thermal properties, which can be achieved with a simple fabrication flow. On a graphene-coated microring resonator with a small active area of 10 μm(2), we have obtained an effective optical modulation via thermal energy electrically generated in a graphene layer. The resonant wavelength of the ring resonator shifts by 2.9 nm under an electrical power of 28 mW, which enables a large modulation depth of 7 dB and a broad operating wavelength range of 6.2 nm with 3 dB modulation. Due to the extremely high electrical and thermal conductivity in graphene, the graphene thermo-optical modulator operates at a very fast switching rate compared with the conventional silicon thermo-optic modulator, i.e. 10%-90% rise (90%-10% fall) time of 750 ns (800 ns). The results promise a novel architecture for massive on-chip modulation of optical interconnects compatible with CMOS technology.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5nr05084gDOI Listing

Publication Analysis

Top Keywords

electrical thermal
8
graphene
6
highly efficient
4
efficient thermo-optic
4
thermo-optic microring
4
modulator
4
microring modulator
4
modulator assisted
4
assisted graphene
4
graphene graphene's
4

Similar Publications

Universal Construction of Electrical Insulation and High-Thermal-Conductivity Composites Based on the In Situ Exfoliation of Boron Nitride-Graphene Hybrid Filler.

ACS Appl Mater Interfaces

January 2025

Institute of Soft-matter and Advanced Functional Materials, Gansu Province Carbon New Material Industry Technology Center, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.

Hexagonal boron nitride (h-BN), with excellent thermal conductivity and insulation capability, has garnered significant attention in the field of electronic thermal management. However, the thermal conductivity of the h-BN-enhanced polymer composite material is far from that expected because of the insurmountable interfacial thermal resistance. In order to realize the high thermal conductivity of polymer composite thermal interface materials, herein, an in situ exfoliation method has been employed to prepare a boron nitride nanosheet-graphene (BNNS-Gr) hybrid filler.

View Article and Find Full Text PDF

Steam condensers are vital components of thermal power plants, responsible for converting turbine exhaust steam back into water for reuse in the power generation cycle. Effective pressure regulation is crucial to ensure operational efficiency and equipment safety. However, conventional control strategies, such as PI, PI-PDn and FOPID controllers, often struggle to manage the nonlinearities and disturbances inherent in steam condenser systems.

View Article and Find Full Text PDF

Highly compressible lamellar graphene/cellulose/sodium alginate aerogel via bidirectional freeze-drying for flexible pressure sensor.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Graphene exhibits exceptional electrical properties, and aerogels made from it demonstrate high sensitivity when used in sensors. However, traditional graphene aerogels have poor biocompatibility and sustainability, posing potential environmental and health risks. Moreover, the stacking of their internal structures results in low compressive strength and fatigue resistance, which limits their further applications.

View Article and Find Full Text PDF

Noble metal (Pd, Pt)-functionalized WSe monolayer for adsorbing and sensing thermal runaway gases in LIBs: a first-principles investigation.

Environ Res

January 2025

College of Energy and Electrical Engineering, Qinghai University, Xining, Qinghai, 810016, China; CHN Energy group Qinghai Electric Power Co., LTD, Xining, Qinghai, 810008, China. Electronic address:

This research using the first-principles theory introduces Pd- and Pt-functionalized WSe monolayers as promising materials for detecting three critical gases (H, CO, and CH), to evaluate the health of Li-ion battery (LIBs). Various sites on the pristine WSe monolayer are considered for the functionalization with Pd and Pt atoms. The adsorption performances of the determined Pd- and Pt-WSe monolayers upon the three gases are analyzed by the comparative highlight of the adsorption energy, bonding behavior and electron transfer.

View Article and Find Full Text PDF

Revealing the Limitations of the Thermocapacitive Cycle.

ACS Nano

January 2025

School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.

While thermoelectric conversion by a thermocapacitive cycle has been considered a promising green technology for low-grade heat recovery, our study finds that its practical feasibility is overestimated. During thermal charging, the coexistence and dynamic competition between thermal-induced voltage rise and self-discharge lead to the limitations of the thermocapacitive cycle. Therefore, the operational conditions in the charge-heat-discharge steps seriously restrict the thermal charging performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!