Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ruthenium-catalyzed asymmetric hydrogenation of simple ketones to generate enantiopure alcohols is an important process widely used in the fine chemical, pharmaceutical, fragrance, and flavor industries. Chiral diphosphine-RuCl2-1,2-diamine complexes are effective catalysts for the reaction giving high chemo- and enantioselectivity. However, no diphosphine-RuCl2-1,2-diamine complex has yet been discovered that is universal for all kinds of ketone substrates, and the ligands must be carefully chosen for each substrate. The procedure of finding the best ligands for a specific substrate can be facilitated by using virtual screening as a complement to the traditional experimental screening of catalyst libraries. We have generated a transition state force field (TSFF) for the ruthenium-catalyzed asymmetric hydrogenation of simple ketones using an improved Q2MM method. The developed TSFF can predict the enantioselectivity for 13 catalytic systems taken from the literature, with a mean unsigned error of 2.7 kJ/mol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ct500178w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!