Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651323PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143652PLOS

Publication Analysis

Top Keywords

correction perturbing
4
perturbing cellular
4
cellular levels
4
levels steroid
4
steroid receptor
4
receptor coactivator-2
4
coactivator-2 impairs
4
impairs murine
4
murine endometrial
4
endometrial function
4

Similar Publications

Phaseless Auxiliary-Field Quantum Monte Carlo Method for Cavity-QED Matter Systems.

J Chem Theory Comput

January 2025

Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, New York, 10010, United States.

We present a generalization of the phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to cavity quantum-electrodynamical (QED) matter systems. The method can be formulated in both the Coulomb and the dipole gauge. We verify its accuracy by benchmarking calculations on a set of small molecules against full configuration interaction and state-of-the-art QED coupled cluster (QED-CCSD) calculations.

View Article and Find Full Text PDF

Computational models of atmospheric composition are not always physically consistent. For example, not all models respect fundamental conservation laws such as conservation of atoms in an interconnected chemical system. In well performing models, these unphysical deviations are often ignored because they are frequently minor, and thus only need a small nudge to perfectly conserve mass.

View Article and Find Full Text PDF

A Scanning Photoelectron Microscopy (SPEM) experiment has been applied to ZnO:N films deposited by Atomic Layer Deposition (ALD) under O-rich conditions and post-growth annealed in oxygen at 800 °C. spatial resolution (130 nm) allows for probing the electronic structure of single column of growth. The samples were cleaved under ultra-high vacuum (UHV) conditions to open atomically clean cross-sectional areas for SPEM experiment.

View Article and Find Full Text PDF

Our recently developed approach based on the local coupled-cluster with single, double, and perturbative triple excitation [LCCSD(T)] model gives very efficient means to compute the ideal-gas enthalpies of formation. The expanded uncertainty (95% confidence) of the method is about 3 kJ·mol for medium-sized compounds, comparable to typical experimental measurements. Larger compounds of interest often exhibit many conformations that can significantly differ in intramolecular interactions.

View Article and Find Full Text PDF

Learning with noisy labels via clean aware sharpness aware minimization.

Sci Rep

January 2025

School of Mechanical, Electrical, and Information Engineering, Putian University, Putian, 351100, China.

Noise label learning has attracted considerable attention owing to its ability to leverage large amounts of inexpensive and imprecise data. Sharpness aware minimization (SAM) has shown effective improvements in the generalization performance in the presence of noisy labels by introducing adversarial weight perturbations in the model parameter space. However, our experimental observations have shown that the SAM generalization bottleneck primarily stems from the difficulty of finding the correct adversarial perturbation amidst the noisy data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!