A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design and Characterization of Buccoadhesive Liquisolid System of an Antihypertensive Drug. | LitMetric

Design and Characterization of Buccoadhesive Liquisolid System of an Antihypertensive Drug.

J Drug Deliv

Department of Pharmaceutics & Pharmaceutical Technology, K. B. Institute of Pharmaceutical Education & Research, Sector 23, Gandhinagar, Gujarat 382023, India.

Published: November 2015

Nifedipine is an antihypertensive BCS class II drug which has poor bioavailability when given orally. The objective of the present study was to increase the bioavailability of nifedipine, by formulation and evaluation of a buccoadhesive liquisolid system using magnesium aluminium silicate (Neusilin) as both carrier and coating material and dissolution media were selected based on the solubility studies. A mixture of carboxymethylcellulose sodium and carbomer was used as mucoadhesive polymers. Buccoadhesive tablets were prepared by direct compression. FTIR studies confirmed no interaction between drug and excipients. XRD studies indicated change/reduction in crystallinity of drug. The powder characteristics were evaluated by different flow parameters to comply with pharmacopoeial specifications. The dissolution studies for liquisolid compacts and tablet formulations were carried out and it was found that nifedipine liquisolid tablets formulated from bioadhesive polymers containing 49% liquisolid system, 17.5% carbomer, and 7.5% carboxymethylcellulose sodium showed the best results in terms of dissolution properties. Prepared formulation batches were evaluated for swelling, bioadhesion strength, ex vivo residence time, and permeability studies. The optimized batch was showing promising features of the system. Formulating nifedipine as a buccoadhesive tablet allows reduction in dose and offers better control over the plasma levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633565PMC
http://dx.doi.org/10.1155/2015/574247DOI Listing

Publication Analysis

Top Keywords

liquisolid system
12
buccoadhesive liquisolid
8
carboxymethylcellulose sodium
8
liquisolid
5
studies
5
design characterization
4
buccoadhesive
4
characterization buccoadhesive
4
system
4
system antihypertensive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!