As a typical warm-season grass, Bermudagrass [Cynodon dactylon (L).Pers.] is widely applied in turf systems and animal husbandry. However, cold temperature is a key factor limiting resource utilization for Bermudagrass. Therefore, it is relevant to study the mechanisms by which Burmudagrass responds to cold. Melatonin is a crucial animal and plant hormone that is responsible for plant abiotic stress responses. The objective of this study was to investigate the role of melatonin in cold stress response of Bermudagrass. Wild Bermudagrass pre-treated with 100 μM melatonin was subjected to different cold stress treatments (-5°C for 8 h with or without cold acclimation). The results showed lower malondialdehyde (MDA) and electrolyte leakage (EL) values, higher levels of chlorophyll, and greater superoxide dismutase and peroxidase activities after melatonin treatment than those in non-melatonin treatment under cold stress. Analysis of chlorophyll a revealed that the chlorophyll fluorescence transient (OJIP) curves were higher after treatment with melatonin than that of non-melatonin treated plants under cold stress. The values of photosynthetic fluorescence parameters increased after treatment with melatonin under cold stress. The analysis of metabolism showed alterations in 46 metabolites in cold-stressed plants after melatonin treatment. Among the measured metabolites, five sugars (arabinose, mannose, glucopyranose, maltose, and turanose) and one organic acid (propanoic acid) were significantly increased. However, valine and threonic acid contents were reduced in melatonin-treated plants. In summary, melatonin maintained cell membrane stability, increased antioxidant enzymes activities, improved the process of photosystem II, and induced alterations in Bermudagrass metabolism under cold stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4630300 | PMC |
http://dx.doi.org/10.3389/fpls.2015.00925 | DOI Listing |
J Proteomics
January 2025
Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, USA.
Survival of brachyuran crabs is temperature-dependent and thermal stress promotes changes during molting. We aimed to decipher the impact of thermal stresses on the X-organ/sinus gland (XO/SG) complex, a temperature-sensitive neuroendocrine tissue involved in the molting regulation of Callinectes sapidus during the intermolt and premolt phases. We employed a proteogenomic approach using specimens subjected to control (24 °C), cold (19 °C), and heat (29 °C) temperatures.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Low‑carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Engineering Research Center of Processing and Utilization of Grain By-products, Ministry of Education, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China. Electronic address:
The FeO nanoparticle synthesized by Acidithiobacillus ferrooxidans have a broad practical value, while the low yield limits their commercial application. Herein, we employed a C heavy-ion beam to induce mutagenesis of A. ferrooxidans BYM and successfully screened a mutant BYMT-200 with a 1.
View Article and Find Full Text PDFSci Rep
January 2025
College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
Ethylene is a signalling factor that plays a key role in the response of plants to abiotic stresses, such as cold stress. Recent studies have shown that the exogenous application of 1-aminocyclopropane-1-carboxylate (ACC), an ethylene promoter, affects plant cold tolerance. The cold-responsive specific gene DREB plays a crucial role in enhancing cold tolerance in plants by activating several cold-responsive (COR) genes.
View Article and Find Full Text PDFJ Biosci Bioeng
January 2025
College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266045, China.
Gene
January 2025
Crop Research Institute, Gansu Academy of Agriculture Sciences, Lanzhou 730070, China.
Some winter rapeseed (Brassica rapa) varieties can endure extremely low temperatures (-20°C to -32°C). However, because of a lack of mutant resources, the molecular mechanisms underlying cold tolerance in B. rapa remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!