Wolbachia are intracellular bacteria that infect a vast range of arthropod species, making them one of the most prevalent endosymbionts in the world. Wolbachia's stunning evolutionary success is mostly due to their reproductive parasitism but also to mutualistic effects such as increased host fecundity or protection against pathogens. However, the mechanisms underlying Wolbachia phenotypes, both parasitic and mutualistic, are only poorly understood. Moreover, it is unclear how the insect immune system is involved in these phenotypes and why it is not more successful in eliminating the bacteria. Here we argue that reactive oxygen species (ROS) are likely to be key in elucidating these issues. ROS are essential players in the insect immune system, and Wolbachia infection can affect ROS levels in the host. Based on recent findings, we elaborate a hypothesis that considers the different effects of Wolbachia on the oxidative environment in novel vs. native hosts. We propose that newly introduced Wolbachia trigger an immune response and cause oxidative stress, whereas in coevolved symbioses, infection is not associated with oxidative stress, but rather with restored redox homeostasis. Redox homeostasis can be restored in different ways, depending on whether Wolbachia or the host is in charge. This hypothesis offers a mechanistic explanation for several of the observed Wolbachia phenotypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4621438 | PMC |
http://dx.doi.org/10.3389/fmicb.2015.01201 | DOI Listing |
Insect Sci
January 2025
State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fuzhou, China.
Serpins (serine protease inhibitors) constitute a superfamily of proteins with functional diversity and unusual conformational flexibility. In insects, serpins act as multiple inhibitors, by forming inactive acyl-enzyme complexes, in regulating Spätzles activation, phenoloxidases (POs) activity, and other cytokines. In this study, we present the cloning and characterization of Octodonta nipae serpin2 (OnSPN2), a 415 residues protein homologous to Tenebrio molitor 42Dd-like.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China. Electronic address:
Plastics and pesticides are commonly used and often coexist in the environment. As pollinating insects, honeybees are simultaneously exposed to both these toxins. However, there has been no study on the toxic effects of nano-polystyrene plastics (nanoPS) and cyfluthrin (Cy) on the Apis cerana cerana Fabricius until now.
View Article and Find Full Text PDFMalar J
January 2025
Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
Malaria remains a significant public health challenge, particularly in low- and middle-income countries, despite ongoing efforts to eradicate the disease. Recent advancements, including the rollout of malaria vaccines, such as RTS,S/AS01 and R21/Matrix-M™, offer new avenues for prevention. However, the rise of resistance to anti-malarial medications necessitates innovative strategies.
View Article and Find Full Text PDFJ Immunol Methods
January 2025
ICAR-Indian Veterinary Research Institute, Bangalore, Karnataka 560024, India.
Bluetongue (BT) is a vector-borne viral disease of multiple domestic and wild ruminants across the globe. The VP7 protein of bluetongue virus (BTV) is the major immune-dominant structural protein that is conserved across the BTV serotypes and therefore, targeted for the development of immuno-diagnostics for BT. In this study, full-length recombinant VP7 protein (rVP7) of BTV-1 was expressed in Trochoplusia ni derived insect cells (Tn5) using codon-optimized synthetic gene construct through baculovirus expression system.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
Entomopathogenic fungi play a critical role in regulating insect populations, and representative species from the and genera have been developed as eco-friendly biocontrol agents for managing agricultural insect pests. Relative to the advances in understanding antifungal immune responses in , knowledge of how fungi evade insect immune defenses remains limited. In this study, we report the identification and characterization of a virulence-required effector Fkp1 in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!