Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria are well characterized and may be useful to infer a solution to better understand the translocation process in Brucella.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4623201 | PMC |
http://dx.doi.org/10.3389/fmicb.2015.01189 | DOI Listing |
Life Metab
February 2025
Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China.
Graphical Abstract Lipoprotein lipase (LPL) mediates peripheral tissue triglyceride (TG) uptake. Hepatic ANGPTL3 (A3) and ANGPTL8 (A8) form a complex and inhibit LPL activity in the white adipose tissue (WAT) via systematic circulation. ANGPTL4 (A4) is expressed in WAT and inhibits LPL activity locally.
View Article and Find Full Text PDFJ Transl Med
January 2025
Center for Memory Disturbances, Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, 06129, Italy.
Background: Alzheimer's disease (AD) is the most frequent neurodegenerative disorder worldwide. The great variability in disease evolution and the incomplete understanding of the molecular mechanisms underlying AD make it difficult to predict when a patient will convert from prodromal stage to dementia. We hypothesize that metabolic alterations present at the level of the brain could be reflected at a systemic level in blood serum of patients, and that these alterations could be used as prognostic biomarkers.
View Article and Find Full Text PDFLipids
January 2025
Department of Laboratory Medicine, Peoples Hospital of Deyang City, Deyang, China.
Lipid-lowering drugs have been used in clinics widely. It is unclear whether the drugs have an effect on renal failure. We chose high-density lipoprotein cholesterol (ieu-b-109), low-density lipoprotein cholesterol (ieu-a-300), triglyceride (ieu-b-111), and total cholesterol (ebi-a-GCST90038690) as exposures.
View Article and Find Full Text PDFBMC Public Health
January 2025
Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
Background: Ischemic heart disease (IHD) remains a leading cause of mortality and morbidity globally. This study aims to evaluate the trends in IHD burden across different socioeconomic regions using data from the Global Burden of Disease Study 2021 (GBD 2021) and to understand the impact of the metabolic risk factors on these trends.
Methods: Data from GBD 2021 was analyzed to evaluate the global age-standardized death rates (ASDR) and disability-adjusted life years (ASRDALYs) linked to IHD.
Vaccines (Basel)
January 2025
Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
Toll-like receptor 2 (TLR2) signaling is a pivotal component of immune system activation, and it is closely linked to the lipidation of bacterial proteins. This lipidation is guided by bacterial signal peptides (SPs), which ensure the precise targeting and membrane anchoring of these proteins. The lipidation process is essential for TLR2 recognition and the activation of robust immune responses, positioning lipidated bacterial proteins as potent immunomodulators and adjuvants for vaccines against bacterial-, viral-, and cancer-related antigens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!