AI Article Synopsis

  • Understanding deep mantle stratification requires examining high-pressure density and structural differences between solid and liquid silicate materials.
  • Using an adapted X-ray absorption method in a diamond anvil cell, researchers measured the density of MgSiO3 glass at pressures up to 127 GPa, finding results that validate recent simulations and exceed previous measurements.
  • The study concludes that the density of melts in the lowermost mantle is greater than that of surrounding solid phases, leading to the likelihood of melts being trapped above the core-mantle boundary.

Article Abstract

One key for understanding the stratification in the deep mantle lies in the determination of the density and structure of matter at high pressures, as well as the density contrast between solid and liquid silicate phases. Indeed, the density contrast is the main control on the entrainment or settlement of matter and is of fundamental importance for understanding the past and present dynamic behavior of the deepest part of the Earth's mantle. Here, we adapted the X-ray absorption method to the small dimensions of the diamond anvil cell, enabling density measurements of amorphous materials to unprecedented conditions of pressure. Our density data for MgSiO3 glass up to 127 GPa are considerably higher than those previously derived from Brillouin spectroscopy but validate recent ab initio molecular dynamics simulations. A fourth-order Birch-Murnaghan equation of state reproduces our experimental data over the entire pressure regime of the mantle. At the core-mantle boundary (CMB) pressure, the density of MgSiO3 glass is 5.48 ± 0.18 g/cm(3), which is only 1.6% lower than that of MgSiO3 bridgmanite at 5.57 g/cm(3), i.e., they are the same within the uncertainty. Taking into account the partitioning of iron into the melt, we conclude that melts are denser than the surrounding solid phases in the lowermost mantle and that melts will be trapped above the CMB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655538PMC
http://dx.doi.org/10.1073/pnas.1512386112DOI Listing

Publication Analysis

Top Keywords

core-mantle boundary
8
density contrast
8
pressure density
8
mgsio3 glass
8
density
6
fate mgsio3
4
mgsio3 melts
4
melts core-mantle
4
boundary conditions
4
conditions key
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!