Background: In 2005, more than 90% of Vietnamese households were using adequately iodized salt, and urinary iodine concentration among women of reproductive age was in the optimal range. However, household coverage declined thereafter to 45% in 2011, and urinary iodine concentration levels indicated inadequate iodine intake.
Objective: To review the strengths and weaknesses of the Vietnamese universal salt iodization program from its inception to the current day and to discuss why achievements made by 2005 were not sustained.
Methods: Qualitative review of program documents and semistructured interviews with national stakeholders.
Results: National legislation for mandatory salt iodization was revoked in 2005, and the political importance of the program was downgraded with consequential effects on budget, staff, and authority.
Conclusions: The Vietnamese salt iodization program, as it was initially designed and implemented, was unsustainable, as salt iodization was not practiced as an industry norm but as a government-funded activity. An effective and sustainable salt iodization program needs to be reestablished for the long-term elimination of iodine deficiency, building upon lessons learned from the past and programs in neighboring countries. The new program will need to include mandatory legislation, including salt for food processing; industry responsibility for the cost of fortificant; government commitment for enforcement through routine food control systems and monitoring of iodine status through existing health/nutrition assessments; and intersectoral collaboration and management of the program. Many of the lessons would apply equally to universal salt iodization programs in other countries and indeed to food fortification programs in general.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0379572115616039 | DOI Listing |
Zhonghua Yu Fang Yi Xue Za Zhi
January 2025
Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou310051, China.
To analyze the iodine nutrition status and its related factors among adults aged 18 years and above in Zhejiang Province in 2022. A multistage stratified sampling method was used to select 4 320 adults aged 18 years and above from 16 on-site survey sites in Zhejiang Province for the study. A questionnaire was used to investigate the general demographic information and personal dietary characteristics of the study participants.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
For rechargeable zinc-iodine batteries, the low electrical conductivity of iodine and the easy dissolution of polyiodide in the electrolyte need to be carefully managed to ensure efficient operation. Herein, we introduce an organic iodized salt, formamidinium iodide (CHNI), to modulate the solvation structure of iodide ion, aimed to improve the reaction kinetics of iodine for reversible redox conversion. The participation of formamidinium ion (FA) into solvation structure leads to the formation of the favorable FAIZn(HO) complex, facilitating easier desolvation for redox conversion with iodine.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.
While many cathode materials have been developed for mild electrolyte-based Zn batteries, the lack of cathode materials hinders the progress of alkaline zinc batteries. Halide iodine, with its copious valence nature and redox possibilities, is considered a promising candidate. However, energetic alkaline iodine redox chemistry is impeded by an alkali-unadapted I element cathode and thermodynamically unstable reaction products.
View Article and Find Full Text PDFNutrients
December 2024
Thyroid Research Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
Universal salt iodisation (USI) plays an essential role in the provision of iodine (I) to populations worldwide. Countries adopting USI programmes, adhering to strict criteria laid down by expert organisations such as the Iodine Global Network, are estimated to have reduced the prevalence of I deficiency by 75% (protecting 720 million individuals worldwide). Despite this success, doubts have been raised as to the desirability of continuing such programmes because of (a) the need to reduce salt intake for cardiovascular prevention and (b) the induction of thyroid autoimmunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!