Download full-text PDF |
Source |
---|
Nano Lett
December 2024
Wyant College of Optical Sciences, University of Arizona, 1630 East University Boulevard, Tucson, Arizona 85721, United States.
Microscopic many-body models based on inputs from first-principles density functional theory are used to calculate the carrier losses due to free carrier Auger-Meitner recombination (AMR) processes in Mo- and W-based monolayer transition metal dichalcogenides as a function of the carrier density, temperature, and dielectric environment. Despite the exceptional strength of Coulomb interaction in the two-dimensional materials, the AMR losses are found to be similar in magnitude to those in conventional III-V-based quantum wells for the same wavelengths. Unlike the case in III-V materials, the losses show nontrivial density dependencies due to the fact that bandgap renormalizations on the order of hundreds of millielectronvolts can bring higher bands into or out of resonance with the optimal energy level for the AMR transition, approximately one bandgap from the lowest band.
View Article and Find Full Text PDFRadiol Case Rep
February 2025
Mohammed V University, Rabat, Morocco.
Venous aneurysms of the lower limbs are rare, and those located in the popliteal area are the most described. Congenital anatomical variations have been reported but are also exceptional. They can affect both superficial and deep veins.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
Carbon-supported single-atom catalysts exhibit exceptional properties in acidic CO reduction. However, traditional carbon supports fall short in building high-site-utilization and CO-rich interfacial environments, and the structural evolution of single-atom metals and catalytic mechanisms under realistic conditions remain ambiguous. Herein, an interconnected mesoporous carbon nanofiber and carbon nanosheet network (IPCF@CS) is reported, derived from microphase-separated block copolymer, to improve catalytic efficiency of isolated Ni.
View Article and Find Full Text PDFSmall Methods
December 2024
School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
Three triazine-based conjugated porous polymers (CPPs) are synthesized via a Pd-catalyzed Suzuki-Miyaura coupling reaction between derivatives of 2,4,6-tri(thiophen-2-yl)-1,3,5-triazine (TTT) and 2,4,6-triphenyl-1,3,5-triazine (TPT). Photocatalysis experiments demonstrate that the hydrogen evolution rate (HER) of ThTh-CPP (homopolymer of TTT) reach an exceptional 46.4 mmol g⁻¹ h⁻¹ without co-catalysts, surpassing ThPh-CPP (8.
View Article and Find Full Text PDFAdv Mater
December 2024
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.
Lightweight cellular materials with high stiffness and excellent recoverability are critically important in structural engineering applications, but the intrinsic conflict between these two properties presents a significant challenge. Here, a topological cellular hierarchy is presented, designed to fabricate ultra-stiff (>10 MPa modulus) yet super-elastic (>90% recoverable strain) graphene aerogels. This topological cellular hierarchy, composed of massive corrugated pores and nanowalls, is designed to carry high loads through predominantly reversible buckling within the honeycomb framework.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!