Aerosol particles can serve as cloud condensation nuclei (CCN) to form cloud droplets, and its composition is a main factor governing whether an aerosol particle is an effective CCN. Pure mineral dust particles are poor CCN; however, changes in chemical composition of mineral dust aerosol particles, due to heterogeneous reactions with reactive trace gases in the troposphere, can modify their CCN properties. In this study we investigated the CCN activities of CaCO3 (as a surrogate for mineral dust) and its six atmospheric ageing products: Ca(NO3)2, CaCl2, CaSO4, Ca(CH3SO3)2, Ca(HCOO)2, and Ca(CH3COO)2. CaCO3 has a very low CCN activity with a hygroscopicity parameter (κ) of 0.001-0.003. The CCN activities of its potential atmospheric ageing products are significantly higher. For example, we determined that Ca(NO3)2, CaCl2 and Ca(HCOO)2 have κ values of ∼0.50, similar to that of (NH4)2SO4. Ca(CH3COO)2 has slightly lower CCN activity with a κ value of ∼0.40, and the κ value of CaSO4 is around 0.02. We further show that exposure of CaCO3 particles to N2O5 at 0% relative humidity (RH) significantly enhances their CCN activity, with κ values increasing to around 0.02-0.04. Within the experimental uncertainties, it appears that the variation in exposure to N2O5 from ∼550 to 15,000 ppbv s does not change the CCN activities of aged CaCO3 particles. This observation indicates that the CaCO3 surface may be already saturated at the shortest exposure. We also discussed the atmospheric implications of our study, and suggested that the rate of change in CCN activities of mineral dust particles in the troposphere is important to determine their roles in cloud formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp03795f | DOI Listing |
J Hazard Mater
December 2024
Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany. Electronic address:
Particle-bound mercury (PBM) concentrations in particulate matter (PM), PM10 and PM2.5, were investigated during dust and non-dust events at urban and rural sites in Cabo Verde, Africa. During dust events, PBM averaged 35.
View Article and Find Full Text PDFExposure to ambient particulate matter (PM) with an aerodynamic diameter of <10 μm (PM) is a well-established health hazard. There is increasing evidence that geogenic (Earth-derived) particles can induce adverse biological effects upon inhalation, though there is high variability in particle bioreactivity that is associated with particle source and physicochemical properties. In this study, we investigated physicochemical properties and biological reactivity of volcanic ash from the April 2021 eruption of La Soufrière volcano, St.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia.
Copper flotation tailings (FTs), resulting from the separation and beneficiation processes of ores, are a significant source of environmental pollution (acid mine drainage, toxic elements leaching, and dust generation). The most common disposal method for this industrial waste is dumping. However, due to their favorable physical and chemical properties-the high content of aluminosilicate minerals (60-90%)-flotation tailings can be effectively treated and reused through geopolymerization technology, thereby adding value to this waste.
View Article and Find Full Text PDFJ Occup Environ Hyg
January 2025
STAMI, National Institute of Occupational Health, Oslo, Norway.
This study aimed to test the use of Rietveld refinement on respirable aerosol samples to determine the phase of respirable crystalline silica (RCS) and other minerals. The results from the Rietveld refinement were compared to an external standard method and gravimetrical measurements. Laboratory samples consisting of α-quartz, feldspar, and calcite with variable proportions and total mass loadings were made and analyzed using the NIOSH 7500 , followed by Rietveld refinement.
View Article and Find Full Text PDFPneumoconiosis, caused by inhaling mineral dust, remains a significant occupational disease, despite a declining incidence. Coal workers' pneumoconiosis (CWP), a common subtype, varies in presentation from simple to complicated forms. Differential diagnosis is crucial, especially when CWP manifests as lung masses mimicking malignancy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!