A specific and sensitive HPLC-MS/MS method was developed and validated for the simultaneously quantification of isoliquiritigenin (ISL) and neoisoliquiritin (NIS) in rat plasma by oral administration. Analytes were analyzed on an Agilent 6460 LC-MS/MS system (Agilent, USA) using an Agilent Zorbax SB-C18 column (4.6 × 150 mm, 5 μm). Gradient elution was applied for the analyte separation using a mobile phase composed of 0.1% formic acid aqueous solution and methanol at a flow rate of 1.0 mL/min with a total running time of 12 min. The calibration curves for ISL and NIS showed good linearity in the concentrations ranging from 0.001 to 4.000 μg/mL with correlation coefficients >0.998. The precision, accuracy, recovery and stability were deemed acceptable. The method was applied to the pharmacokinetics study of ISL and NIS in rats by single and combination administration. The result showed that Cmax and AUC0→t of ISL were markedly increased from 0.53 to 1.20 μg/mL, and from 69.63 to 200.74 min μg/mL by combination administration. The mean t1/2 value was also prolonged from 64.55 to 203.74 min in the combination group. These results indicated that NIS may have been metabolized to ISL which increased the absorption and extended the elimination of ISL. However, little difference was found for NIS pharmacokinetics parameters between single NIS and the combination group, which suggested that there was no significant biotransformation of ISL to NIS. Copyright © 2015 John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bmc.3655 | DOI Listing |
J Mol Model
January 2016
Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
In the present work, a detailed investigation of Ni(II) hydration in water solutions was carried out using density functional theory (DFT) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The hydrated characteristics of [Ni(H2O)n](2+) clusters, such as energy parameters, atomic charge distributions, and bond parameters, were explored using DFT with Becke's three-parameter exchange potential and the Lee-Yang-Parr correlation functional (B3LYP). DFT calculations indicated that the preferred structure of the first hydration shell of Ni(II) generally has a coordination number of six and is almost unaffected by the water molecules in the outer solvation shell, whereas the structure of the second solvation shell varies as the hydration proceeds.
View Article and Find Full Text PDFBiomed Chromatogr
July 2016
Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine; State Key Laboratory Breeding Base of Systematic Research, People's Republic of China.
A specific and sensitive HPLC-MS/MS method was developed and validated for the simultaneously quantification of isoliquiritigenin (ISL) and neoisoliquiritin (NIS) in rat plasma by oral administration. Analytes were analyzed on an Agilent 6460 LC-MS/MS system (Agilent, USA) using an Agilent Zorbax SB-C18 column (4.6 × 150 mm, 5 μm).
View Article and Find Full Text PDFBMC Genomics
August 2014
Department of Horticulture, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam 540-950, Republic of Korea.
Background: LIM (Lin-11, Isl-1 and Mec-3 domains) genes have been reported to trigger the formation of actin bundles, a major higher-order cytoskeletal assembly, in higher plants; however, the stress resistance related functions of these genes are still not well known. In this study, we collected 22 LIM genes designated as Brassica rapa LIM (BrLIM) from the Brassica database, analyzed the sequences, compared them with LIM genes of other plants and analyzed their expression after applying biotic and abiotic stresses in Chinese cabbage.
Results: Upon sequence analysis these genes were confirmed as LIM genes and found to have a high degree of homology with LIM genes of other species.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!