Soon after the discovery of deuterium, efforts to utilize this stable isotope of hydrogen for labeling of plants began and have proven successful for natural abundance to 20% enrichment. However, isotopic labeling with deuterium ((2)H) in higher plants at the level of 40% and higher is complicated by both physiological responses, particularly water exchange through transpiration, and inhibitory effects of D2O on germination, rooting, and growth. The highest incorporation of 40-50% had been reported for photoheterotrophic cultivation of the duckweed Lemna. Higher substitution is desirable for certain applications using neutron scattering and nuclear magnetic resonance (NMR) techniques. (1)H(2)H NMR and mass spectroscopy are standard methods frequently used for determination of location and amount of deuterium substitution. The changes in infrared (IR) absorption observed for H to D substitution in hydroxyl and alkyl groups provide rapid initial evaluation of incorporation. Short-term experiments with cold-tolerant annual grasses can be carried out in enclosed growth containers to evaluate incorporation. Growth in individual chambers under continuous air perfusion with dried sterile-filtered air enables long-term cultivation of multiple plants at different D2O concentrations. Vegetative propagation from cuttings extends capabilities to species with low germination rates. Cultivation in 50% D2O of annual ryegrass and switchgrass following establishment of roots by growth in H2O produces samples with normal morphology and 30-40% deuterium incorporation in the biomass. Winter grain rye (Secale cereale) was found to efficiently incorporate deuterium by photosynthetic fixation from 50% D2O but did not incorporate deuterated phenylalanine-d8 from the growth medium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2015.07.014 | DOI Listing |
J Struct Biol
January 2025
Center of Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Institute for Drug Discovery, Institute for Computer Science, Wilhelm Ostwald Institute for Physical and Theoretical Chemistry, University Leipzig, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI and School of Embedded Composite Artificial Intelligence SECAI, Dresden/Leipzig, Germany; Department of Pharmacology, Institute of Chemical Biology, Center for Applied Artificial Intelligence in Protein Dynamics, Vanderbilt University, Nashville, TN, USA. Electronic address:
High-throughput characterization of antibody-antigen complexes at the atomic level is critical for understanding antibody function enabling therapeutic development. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) enables rapid epitope mapping, but its data are too sparse for independent structure determination. In this study, we introduce RosettaHDX, a hybrid method that combines computational docking with differential HDX-MS data to enhance the accuracy of antibody-antigen complex models beyond what either method can achieve individually.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
College of Pharmacy, Nankai University, Tianjin 300353, P. R. China.
The use of magnesium and methanol in the reduction of various functional groups has been well established. In this study, we present a reductive deuteration system using Mg/CHOD, which successfully facilitates the conversion of α,β-unsaturated esters, amides, and nitriles to their saturated counterparts. This protocol achieves good yields and high degrees of deuterium incorporation, while avoiding defunctionalization in the presence of various functional groups.
View Article and Find Full Text PDFACS Catal
December 2024
Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.
A Rh(III)-catalyzed sequential C-H bond addition to dienes and in situ formed aldimines was developed, allowing for the preparation of otherwise challenging to access amines with quaternary centers at the -position. A broad range of dienes were effective inputs and installed a variety of aryl and alkyl substituents at the quaternary carbon site. Aryl and alkyl sulfonamide and carbamate nitrogen substituents were incorporated by using different formaldimine precursors.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany.
Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HTTex1), generated by aberrant splicing or proteolysis, and containing the expanded polyglutamine (polyQ) segment. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HTTex1 fibrils has remained unknown, limiting diagnostic and treatment efforts.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India.
The development of efficient and robust catalytic systems based on earth-abundant transition metals for fundamentally new transformations is crucial for sustainable chemical synthesis. Herein, an effective and selective Ni-catalyzed dehydrogenative coupling of alcohols with hydrazines with the liberation of ammonia gas is reported. Although several methods were documented for the -alkylation reaction, the present strategy is conceptually novel, and the reaction proceeds through a pathway involving N-N bond cleavage of phenylhydrazine followed by hydrogen autotransfer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!