Background: Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the swine industry and causes important economic losses. No effective antiviral drugs against it are commercially available. We recently reported that the culture supernatant of Actinobacillus pleuropneumoniae, the porcine pleuropneumonia causative agent, has an antiviral activity in vitro against PRRSV in SJPL cells. Objectives of this study were (i) to identify the mechanism behind the antiviral activity displayed by A. pleuropneumoniae and (ii) to characterize the active molecules present in the bacterial culture supernatant.
Methods: Antibody microarray analysis was used in order to point out cellular pathways modulated by the A. pleuropneumoniae supernatant. Subsequent, flow cytometry analysis and cell cycle inhibitors were used to confirm antibody microarray data and to link them to the antiviral activity of the A. pleuropneumoniae supernatant. Finally, A. pleuropneumoniae supernatant characterization was partially achieved using mass spectrometry.
Results: Using antibody microarray, we observed modulations in G2/M-phase cell cycle regulation pathway when SJPL cells were treated with A. pleuropneumoniae culture supernatant. These modulations were confirmed by a cell cycle arrest at the G2/M-phase when cells were treated with the A. pleuropneumoniae culture supernatant. Furthermore, two G2/M-phase cell cycle inhibitors demonstrated the ability to inhibit PRRSV infection, indicating a potential key role for PRRSV infection. Finally, mass spectrometry lead to identify two molecules (m/z 515.2 and m/z 663.6) present only in the culture supernatant.
Conclusions: We demonstrated for the first time that A. pleuropneumoniae is able to disrupt SJPL cell cycle resulting in inhibitory activity against PRRSV. Furthermore, two putative molecules were identified from the culture supernatant. This study highlighted the cell cycle importance for PRRSV and will allow the development of new prophylactic or therapeutic approaches against PRRSV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650394 | PMC |
http://dx.doi.org/10.1186/s12985-015-0404-3 | DOI Listing |
Ann N Y Acad Sci
January 2025
Department of Biology, University of Kentucky, Lexington, Kentucky, USA.
Spiny mice (Acomys spp.) are warm-blooded (homeothermic) vertebrates whose ability to restore missing tissue through regenerative healing has coincided with the evolution of unique cellular and physiological adaptations across different tissue types. This review seeks to explore how these bizarre rodents deploy unique or altered injury response mechanisms to either enhance tissue repair or fully regenerate excised tissue compared to closely related, scar-forming mammals.
View Article and Find Full Text PDFCancer Res
January 2025
First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Sunitinib is a first-line targeted therapy for patients with renal cell carcinoma (RCC), but resistance represents a significant obstacle to the treatment of advanced and metastatic RCC. Metabolic reprogramming is a characteristic of RCC, and changes in metabolic processes might contribute to resistance to sunitinib. Here, we identified MTHFD2, a mitochondrial enzyme involved in one-carbon metabolism, as a critical mediator of sunitinib resistance in RCC.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Evidence suggests that increases in ploidy have occurred frequently in the evolutionary history of organisms and can serve adaptive functions to specialized somatic cells in multicellular organisms. However, the sudden multiplication of all chromosome content may present physiological challenges to the cells in which it occurs. Experimental studies have associated increases in ploidy with reduced cell survival and proliferation.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Molecular Biology Vadi Kampüsü, Istanbul Atlas University, Anadolu Cd., No 40, Kağıthane, Istanbul, 34408, Turkey.
Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India.
This review explores the current understanding and recent advancements in neuroblastoma, one of the most common extracranial solid pediatric cancers, accounting for ~ 15% of childhood cancer-related mortality. The hallmarks of NBL, including angiogenesis, metastasis, apoptosis resistance, cell cycle dysregulation, drug resistance, and responses to hypoxia and ROS, underscore its complex biology. The tumor microenvironment's significance in disease progression is acknowledged in this study, along with the pivotal role of cancer stem cells in sustaining tumor growth and heterogeneity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!