Characterization of a recombinant 7,8-linoleate diol synthase from Glomerella cingulate.

Appl Microbiol Biotechnol

Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.

Published: April 2016

AI Article Synopsis

  • Researchers cloned and expressed a diol synthase enzyme from the fungus Glomerella cingulate in E. coli, achieving a specific activity of 0.87 U mg(-1) through purification techniques.
  • The enzyme, estimated as a 127-kDa tetramer, effectively converts linoleic acid into 7S,8S-DiHODE, demonstrating the highest catalytic efficiency on linoleic acid compared to other fatty acids.
  • Optimal enzyme activity for producing 7,8-DiHODE occurs at pH 6.5, 40 °C, and involves dimethyl sulfoxide (DMSO), resulting in a 62% yield of the product from linoleic acid.

Article Abstract

A putative diol synthase from the fungus Glomerella cingulate was cloned and expressed in Escherichia coli. The putative diol synthase from G. cingulate was purified by His-Trap affinity chromatography with a specific activity of 0.87 U mg(-1), an eightfold purification, and a yield of 28%. One unit of activity was defined as the amount of enzyme required to produce 1 μmol of 7,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid (7,8-DiHODE) per min. The purified enzyme was estimated as a 127-kDa tetramer with a molecular mass of 510 kDa by gel filtration chromatography. The enzyme converted linoleic acid to a product, identified as 7S,8S-DiHODE by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) and nuclear magnetic resonance (NMR) spectroscopy. The specific activity and catalytic efficiency (k cat/K m) of 7,8-diol synthase from G. cingulate for the conversion of fatty acid to dihydroxy fatty acid followed the order linoleic acid > α-linolenic acid > oleic acid > palmitoleic acid, indicating that the enzyme is a 7,8-linoleate diol synthase (7,8-LDS). The activity of the enzyme for the conversion of 7,8-DiHODE from linoleic acid was maximal at pH 6.5, 40 °C, and 2.5% (v/v) dimethyl sulfoxide (DMSO). Under these conditions, 7,8-LDS from G. cingulate converted 1.0 mM linoleic acid to 0.62 mM 7,8-DiHODE for 30 min, with a conversion yield of 62% (mol/mol), via 8-hydroperoxy-9,12(Z,Z)-octadecadienoic acid (8-HPODE) as an intermediate. The accumulation of 8-HPODE was due to a higher 8-dioxygenase activity in the N-terminal domain than hydroperoxide isomerase activity in the C-terminal domain.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-015-7132-xDOI Listing

Publication Analysis

Top Keywords

diol synthase
16
linoleic acid
16
acid
11
78-linoleate diol
8
glomerella cingulate
8
putative diol
8
synthase cingulate
8
specific activity
8
78-dihode min
8
converted linoleic
8

Similar Publications

The roots of Panax ginseng C. A. Meyer (ginseng) are one of the traditional medicinal herbs in Asian countries and is known as the "king of all herbs".

View Article and Find Full Text PDF

Biocatalytic oxyfunctionalization of unsaturated fatty acids to oxygenated chemicals via hydroxy fatty acids.

Biotechnol Adv

December 2024

Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-Gu, Seoul 03760, Republic of Korea.

The selective oxyfunctionalization of unsaturated fatty acids is difficult in chemical reactions, whereas regio- and stereoselective oxyfunctionalization is often performed in biocatalytic synthesis. Fatty acid oxygenases, including hydratases, lipoxygenases, dioxygenases, diol synthases, cytochrome P450 monooxygenases, peroxygenases, and 12-hydroxylases, are used to convert C16 and C18 unsaturated fatty acids to diverse regio- and stereoselective mono-, di-, and trihydroxy fatty acids via selective oxyfunctionalization. The formed hydroxy fatty acids or hydroperoxy fatty acids are metabolized to industrially important oxygenated chemicals such as lactones, green leaf volatiles, and bioplastic monomers, including ω-hydroxy fatty acids, α,ω-dicarboxylic acids, and fatty alcohols, by biocatalysts.

View Article and Find Full Text PDF

Construction and Optimization of a Yeast Cell Factory for Producing Active Unnatural Ginsenoside 3β--Glc-DM.

ACS Synth Biol

November 2024

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.

Ginsenosides are major active components of , which are generally glycosylated at C3-OH and/or C20-OH of protopanaxadiol (PPD) and C6-OH and/or C20-OH of protopanaxatriol. However, the glucosides of dammarenediol-II (DM), which is the direct precursor of PPD, have scarcely been separated from . Because different positions and numbers of the hydroxyl and glycosyl groups lead to a diversity of structure and function of the ginsenosides, it can be inferred that DM glucosides may have different pharmacological activities compared with natural ginsenosides.

View Article and Find Full Text PDF

The social amoeba Polysphondylium violaceum uses chemoattractants different from those of Dictyoctelium discoideum for cell aggregation. However, the detailed mechanisms in P. violaceum remain unknown.

View Article and Find Full Text PDF

Azole antifungals inhibit the sterol C14-demethylase (CYP51/Erg11) of the ergosterol biosynthesis pathway. Here we show that the azole-induced synthesis of fungicidal cell wall carbohydrate patches in the pathogenic mold Aspergillus fumigatus strictly correlates with the accumulation of the CYP51 substrate eburicol. A lack of other essential ergosterol biosynthesis enzymes, such as sterol C24-methyltransferase (Erg6A), squalene synthase (Erg9) or squalene epoxidase (Erg1) does not trigger comparable cell wall alterations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!