A moderately halophilic bacterium, Halomonas xianhensis SUR308 (Genbank Accession No. KJ933394) was isolated from a multi-pond solar saltern at Surala, Ganjam district, Odisha, India. The isolate produced a significant amount (7.87 g l(-1)) of extracellular polysaccharides (EPS) when grown in malt extract-yeast extract medium supplemented with 2.5% NaCl, 0.5% casein hydrolysate and 3% glucose. The EPS was isolated and purified following the conventional method of precipitation and dialysis. Chromatographic analysis (paper, GC and GC-MS) of the hydrolyzed EPS confirmed its heteropolymeric nature and showed that it is composed mainly of glucose (45.74 mol%), galactose (33.67 mol %) and mannose (17.83 mol%). Fourier-transform infrared spectroscopy indicated the presence of methylene and carboxyl groups as characteristic functional groups. In addition, its proton nuclear magnetic resonance spectrum revealed functional groups specific for extracellular polysaccharides. X-ray diffraction analysis revealed the amorphous nature (CIxrd, 0.56) of the EPS. It was thermostable up to 250 °C and displayed pseudoplastic rheology and remarkable stability against pH and salts. These unique properties of the EPS produced by H. xianhensis indicate its potential to act as an agent for detoxification, emulsification and diverse biological activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08927014.2015.1106479 | DOI Listing |
Protein J
January 2025
Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA, 92130, USA.
The Ferguson plot is a simple method for determining the molecular weight of native proteins and their complexes. In this study, we tested the validity of the Ferguson plot based on agarose native gel electrophoresis using multimeric chaperone protein, ClpB, derived from a moderate halophile that forms a native hexamer. The Ferguson plot showed a single band with a molecular weight of 1,500 kDa, approximately twice the size of the native hexamer.
View Article and Find Full Text PDFBMC Microbiol
November 2024
Research and Internationalization Office, National University of Science and Technology, Bulawayo, Zimbabwe.
Background: Soda pans are unique, natural aquatic environments characterised by elevated salinity and alkalinity, creating a distinctive and often extreme geochemistry. The microbiomes of soda pans are unique, with extremophiles such as halophiles, alkaliphiles and haloalkaliphiles being important. Despite being dominated by mostly unculturable inhabitants, soda pans hold immense biotechnological potential.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
November 2024
Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530006, China.
Cureus
September 2024
Department of Microbiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND.
Mar Drugs
September 2024
Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
Haloarchaea are a group of moderate and extreme halophilic microorganisms, belonging to the Archaea domain, that constitute relevant microbial communities in salty environments like coastal and inland salted ponds, marshes, salty lagoons, etc. They can survive in stress conditions such as high salinity and, therefore, high ionic strength, high doses of ultraviolet radiation (UV), high temperature, and extreme pH values. Consequently, most of the species can be considered polyextremophiles owing to their ability to respond to the multiple extreme conditions characterizing their natural habitats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!