Pyrosequencing reveals microbial community profile in anaerobic bio-entrapped membrane reactor for pharmaceutical wastewater treatment.

Bioresour Technol

Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore. Electronic address:

Published: January 2016

In this study, pharmaceutical wastewater with high salinity and total chemical oxygen demand (TCOD) was treated by an anaerobic membrane bioreactor (AnMBR) and an anaerobic bio-entrapped membrane reactor (AnBEMR). The microbial populations and communities were analyzed using the 454 pyrosequencing method. The hydraulic retention time (HRT), membrane flux and mean cell residence time (MCRT) were controlled at 30.6h, 6L/m(2)h and 100d, respectively. The results showed that the AnBEMR achieved higher TCOD removal efficiency and greater biogas production compared to the AnMBR. Through DNA pyrosequencing analysis, both the anaerobic MBRs showed similar dominant groups of bacteria and archaea. However, phylum Elusimicrobia of bacteria was only detected in the AnBEMR; the higher abundance of dominant archaeal genus Methanimicrococcus found in the AnBEMR could play an important role in degradation of the major organic pollutant (i.e., trimethylamine) present in the pharmaceutical wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2015.10.100DOI Listing

Publication Analysis

Top Keywords

pharmaceutical wastewater
12
anaerobic bio-entrapped
8
bio-entrapped membrane
8
membrane reactor
8
pyrosequencing reveals
4
reveals microbial
4
microbial community
4
community profile
4
anaerobic
4
profile anaerobic
4

Similar Publications

Trace organic contaminants (TrOCs), including pharmaceutically active compounds (PhACs), present significant challenges for conventional water treatment processes and pose potential risks to environmental and human health. To address these issues, nanofiltration (NF) and reverse osmosis (RO) membrane technologies have gained attention. This study aims to evaluate the performance of NF and RO membranes in removing TrOCs from wastewater and develop a predictive model using the Solution Diffusion Model.

View Article and Find Full Text PDF

Cationic hydrogel particles (CHPs) crosslinked with glutaraldehyde were synthesized and characterized to evaluate their removal capacity for two globally consumed antibiotics: amoxicillin and sulfamethoxazole. The obtained material was characterized by FTIR, SEM, and TGA, confirming effective crosslinking. The optimal working pH was determined to be 6.

View Article and Find Full Text PDF

This research study critically evaluates the concentrations of selected pharmaceuticals found within wastewater and at various stages within a selected wastewater treatment plant. The study further investigates the effects of seasonal variation, between wet and dry months, on the removal of target analytes. To the best of the authors' knowledge, ivermectin in wastewater has not been investigated in South Africa.

View Article and Find Full Text PDF

Using Zebrafish G Protein-Coupled Receptors to Obtain a Better Appreciation of the Impact of Pharmaceuticals in Wastewater to Fish.

Environ Sci Technol

December 2024

Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Shiga 520-0811, Japan.

Pharmaceutical discharge to the environment is of concern due to its potential adverse effects on aquatic species. It is estimated that around 40% of pharmaceuticals target G protein-coupled receptors (GPCRs). The transforming growth factor- (TGF) shedding assay was applied to measure the antagonistic activities of pharmaceuticals against human GPCRs.

View Article and Find Full Text PDF

The pharmaceutical industry plays a crucial role in driving global economic growth but also poses substantial environmental challenges, particularly in the efficient treatment of production wastewater. This study investigates the efficacy of micro-nano bubble (MNB) ozonation for treating high-strength ibuprofen (IBU)-laden wastewater (49.9 ± 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!