The purpose of this study was to develop enabling bioreactor technologies using a novel voice coil actuator system for investigating the effects of periodic strain on cardiac patches fabricated with rat cardiomyocytes. The bioengineered muscle constructs used in this study were formed by culturing rat neonatal primary cardiac cells on a fibrin gel. The physical design of the bioreactor was initially conceived using Solidworks to test clearances and perform structural strain analysis. Once the software design phase was completed the bioreactor was assembled using a combination of commercially available, custom machined, and 3-D printed parts. We utilized the bioreactor to evaluate the effect of a 4-h stretch protocol on the contractile properties of the tissue after which immunohistological assessment of the tissue was also performed. An increase in contractile force was observed after the strain protocol of 10% stretch at 1 Hz, with no significant increase observed in the control group. Additionally, an increase in cardiac myofibril alignment, connexin 43 expression, and collagen type I distribution were noted. In this study we demonstrated the effectiveness of a new bioreactor design to improve contractility of engineered cardiac muscle tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4653094 | PMC |
http://dx.doi.org/10.1007/s13239-015-0236-8 | DOI Listing |
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
National Key Laboratory of Bioreactors, School of Biological Engineering, East China University of Science and Technology, Shanghai 200237, China. *Corresponding author, E-mail:
NPJ Syst Biol Appl
January 2025
School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
We report the existence of deterministic patterns in statistical plots of single-cell transcriptomic data. We develop a theory showing that the patterns are neither artifacts introduced by the measurement process nor due to underlying biological mechanisms. Rather they naturally emerge from finite sample size effects.
View Article and Find Full Text PDFJ Voice
January 2025
Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria; Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria.
Environ Res
January 2025
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia; Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia.
Managing wastewater and using renewable energy sources are challenges in achieving Sustainable Development Goals. This study provides an overview of the factors influencing the performance of algae-based membrane bioreactors (AMBRs) for contaminant removal from wastewater and biogas. This review highlights that the performance of AMBRs in removing total phosphorus (TP) and nitrogen (N) from wastewater can reach up to 93% and 97%, depending on parameters such as pH, hydraulic retention time (HRT), and algae concentration.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
Shotgun and proximity-ligation metagenomic sequencing were used to generate thousands of metagenome assembled genomes (MAGs) from the untreated wastewater, activated sludge bioreactors, and anaerobic digesters from two full-scale municipal wastewater treatment facilities. Analysis of the antibiotic resistance genes (ARGs) in the pool of contigs from the shotgun metagenomic sequences revealed significantly different relative abundances and types of ARGs in the untreated wastewaster compared to the activated sludge bioreactors or the anaerobic digesters (p < 0.05).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!